Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "three-dimensional cell culture" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
In situ-formed bacterial exopolysaccharide (EPS) as a potential carrier for anchorage-dependent cell cultures
Autorzy:
Komorowski, Piotr
Kołodziejczyk, Agnieszka
Makowski, Krzysztof
Kotarba, Sylwia
Walkowiak, Bogdan
Powiązania:
https://bibliotekanauki.pl/articles/1844871.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Polskie Towarzystwo Biominerałów
Tematy:
bacterial exopolysaccharides
dextran- -based “microcarriers”
scanning electron microscopy
atomic force microscopy
roughness parameters
three-dimensional cell culture
Opis:
The study involved the use of a bacterial strain isolated from environmental samples which produce the biopolymer in the form of pellets in the submerged culture. This material (bacterial exopolysaccharide) is produced by bacteria of the Komogateibacter xylinus which are prevalent in the environment. The aim of this study was to characterize bacterial exopolysaccharides and commercial dextran-based “microcarriers” in terms of their roughness and cell culture effects, including the morphology and viability of the human hybridoma vascular endothelial cell line EA.hy926. The pellets were characterized using scanning electron microscopy (SEM) and atomic for¬ce microscopy (AFM). The resulting structures were used for cell culture of adherent cells (anchorage¬-dependent cells). At the same time, the cultures with commercial, dextran-based “microcarriers” were carried out for comparative purposes. After com¬pletion of the cell culture (24 hours of culture), the cellulose and commercial “carriers” were analyzed using SEM and AFM. Finally, the obtained cell dens¬ities (fluorescence labelling) and their morphological characteristics (SEM) were compared. The obtained results strongly support the applicability of bacterial exopolysaccharide (EPS) in tissue engineering to build innovative 3D scaffolds for cell culture, the more so that it is technologically possible to produce EPS as spatially complex structure
Źródło:
Engineering of Biomaterials; 2021, 24, 159; 18-23
1429-7248
Pojawia się w:
Engineering of Biomaterials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trastuzumab Efficacy Quantified by Fluorine-19 Magnetic Resonance Imaging
Autorzy:
Bartusik-Aebisher, Dorota
Aebisher, David
Czmil, Mrs Anna
Mazur, Damian
Powiązania:
https://bibliotekanauki.pl/articles/895489.pdf
Data publikacji:
2020-06-29
Wydawca:
Polskie Towarzystwo Farmaceutyczne
Tematy:
trastuzumab
magnetic resonance imaging
breast cancer cells
three-dimensional cell culture
Trastuzumab conjugates
Opis:
The purpose of this study was to conjugate Trastuzumab with fluorine-bearing PAMAM dendrimer to compare activities in three-dimensional (3D) cultured breast cancer cells with parent Trastuzumab. An in vitro study was performed to determine cellular responses to fluorinated Trastuzumab conjugates by Magnetic Resonance Imaging (MRI). Breast cancer cells were cultured in 3D geometry. Proton (1H) MRI and Fluorine-19 (19F) MRI were used for visualization of cellular locations within a Hollow Fiber Bioreactor (HFBR) device and to monitor the cellular response to treatment. The results of this study confirm that cell growth is significantly decreased following treatment with Trastuzumab conjugates. The use of fluorinated Trastuzumab conjugates decreases breast cancer cell growth in 3D cultures and allows for tracking of drug delivery to cancer cells via 19F.
Źródło:
Acta Poloniae Pharmaceutica - Drug Research; 2020, 77, 3; 495-503
0001-6837
2353-5288
Pojawia się w:
Acta Poloniae Pharmaceutica - Drug Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inżynieria komórkowa w systemach lab-on-a-chip
Cell engineering in lab-on-chip systems
Autorzy:
Tomecka, E.
Tokarska, K.
Jastrzębska, E.
Chudy, M.
Brzózka, Z.
Powiązania:
https://bibliotekanauki.pl/articles/172147.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
inżynieria komórkowa
mikrosystemy przepływowe
dwuwymiarowa hodowla komórkowa
trójwymiarowa hodowla komórkowa
cell engineering
microfluidic systems
two-dimensional cell culture
three-dimensional cell culture
Opis:
Lab-on-a-chip systems are promising tools in the field of cell engineering. Microfluidic systems are integrated microlaboratories consisting of many microstructures such as microchannels and microchambers, which can be used for cell analysis and cell culture. Appropriately designed geometry of the chip allows to mimic in vivo conditions. Microsystems enables continuous culture medium perfusion. During cell culture, regulation of the flow rate of medium is possible, which allows to control conditions of the cultivation. In this paper we present a review of microfluidics systems which are used in cell engineering. We describe methods of microsystems fabrication, parameters which influence cell proliferation in microscale and examples of microsystems for cell analysis and cell culturing. Microfluidic systems for maintaining cell culture are mainly fabricated of poly(dimethylsiloxane) (PDMS) and glass, non-toxic materials for cells. The most commonly used method for fabrication of PDMS microsystems is photolithography and replica molding techniques. Cell culture in microsystems can be carried out in two ways: as a two-dimensional (2D) cell culture and three-dimensional (3D) cell culture. In two-dimensional culture cells grow as a monolayer on a flat surface of microchambers or microchannels. Microsystems for two-dimensional cell culture are widely described in the literature. They are mainly used for: (i) cell proliferation after exposure to external stimuli, (ii) testing the activity of cytotoxic drugs, (iii) interactions and cell migration and (iv) the evaluation of procedures applicable in tumor therapy e. g. photodynamic therapy. However, two-dimensional cell culture do not mimic fully in vivo conditions. In living organisms cells grow spatially creating three-dimensional structures like tissues. Therefore, nowadays microsystems for 3D cell culture are being developed intensively. Three-dimensional cell culture in microfluidic systems can be achieved in three ways: by the design of suitable geometry and topography of microchannels, by the use of hydrogels or by spheroids formation. Three-dimensional cell culture in microfluidic systems are much better experimental in vitro models than cell culture in traditional culture vessels. It is the main reason why microsystems should be still improved, as to become widely used research tools in cellular engineering.
Źródło:
Wiadomości Chemiczne; 2015, 69, 9-10; 909-929
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies