- Tytuł:
- Sufficient Conditions for Maximally Edge-Connected and Super-Edge-Connected Graphs Depending on The Clique Number
- Autorzy:
- Volkmann, Lutz
- Powiązania:
- https://bibliotekanauki.pl/articles/31343389.pdf
- Data publikacji:
- 2019-05-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
edge-connectivity
clique number
maximally edge-connected graphs
super-edge-connected graphs - Opis:
- Let G be a connected graph with minimum degree δ and edge-connectivity λ. A graph is maximally edge-connected if λ = δ, and it is super-edgeconnected if every minimum edge-cut is trivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree. The clique number ω(G) of a graph G is the maximum cardinality of a complete subgraph of G. In this paper, we show that a connected graph G with clique number ω(G) ≤ r is maximally edge-connected or super-edge-connected if the number of edges is large enough. These are generalizations of corresponding results for triangle-free graphs by Volkmann and Hong in 2017.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2019, 39, 2; 567-573
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki