Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Sufficient Conditions for Maximally Edge-Connected and Super-Edge-Connected Graphs Depending on The Clique Number

Tytuł:
Sufficient Conditions for Maximally Edge-Connected and Super-Edge-Connected Graphs Depending on The Clique Number
Autorzy:
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31343389.pdf
Data publikacji:
2019-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-connectivity
clique number
maximally edge-connected graphs
super-edge-connected graphs
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 2; 567-573
2083-5892
Język:
angielski
Prawa:
CC BY-NC-ND: Creative Commons Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Let G be a connected graph with minimum degree δ and edge-connectivity λ. A graph is maximally edge-connected if λ = δ, and it is super-edgeconnected if every minimum edge-cut is trivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree. The clique number ω(G) of a graph G is the maximum cardinality of a complete subgraph of G. In this paper, we show that a connected graph G with clique number ω(G) ≤ r is maximally edge-connected or super-edge-connected if the number of edges is large enough. These are generalizations of corresponding results for triangle-free graphs by Volkmann and Hong in 2017.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies