Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "statistical regression" wg kryterium: Temat


Tytuł:
Improving Diesel Engine Reliability Using an Optimal Prognostic Model to Predict Diesel Engine Emissions and Performance Using Pure Diesel and Hydrogenated Vegetable Oil
Autorzy:
Žvirblis, Tadas
Hunicz, Jacek
Matijošius, Jonas
Rimkus, Alfredas
Kilikevičius, Artūras
Gęca, Michał
Powiązania:
https://bibliotekanauki.pl/articles/28328353.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
engine’s reliability
statistical regression analysis
linear regression models
ANCOVA
MAPE
hydrotreated vegetable oil
Opis:
The reliability of internal combustion engines becomes an important aspect when traditional fuels with biofuels. Therefore, the development of prognostic models becomes very important for evaluating and predicting the replacement of traditional fuels with biofuels in internal combustion engines. The models have been made to model AVL 5402 engine emission, vibration, and sound pressure parameters using a three-stage statistical regression models. The fifteen parameters might be accurately predicted by a single statistic presented here. Both fuel type (diesel fuel and HVO) and engine parameters that can be adjusted were considered, since this analysis followed the symmetry of the methods. The data analysis process included three distinct steps and symmetric statistical regression testing was performed. The algorithm examined the effectiveness of various engine settings. Finally, the optimal fixed engine parameter and the optimal statistic were used to construct an ANCOVA model. The ANCOVA model improved the accuracy of prediction for all fifteen missing parameters.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 4; art. no. 174358
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determinants of the experts evaluation of journals in economic sciences
Autorzy:
Osiewalski, Jacek
Osiewalska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/703006.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
scientometrics
multiple regression statistical model
model reduction
Opis:
In 2015 an important part of the official evaluation of Polish scientific journals was left to experts’ judgement. In this paper we try to establish which observable factors (with available data) are closely related to the outcome of experts’ evaluation of Polish journals in economic sciences. Using the multiple regression statistical model we show that only 5 variables (out of 17) significantly explain almost 50% of the empirical variance of the experts’ evaluation. The determinants of particular interest, not entering the formal criteria and not related to the impact on global science, are: the number of citations mainly in Polish journals and the affiliation with the Polish Academy of Sciences.
Źródło:
Nauka; 2017, 1
1231-8515
Pojawia się w:
Nauka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms
Autorzy:
Trawiński, B.
Smętek, M.
Telec, Z.
Lasota, T.
Powiązania:
https://bibliotekanauki.pl/articles/331296.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
maszyna ucząca się
test statystyczny nieparametryczny
regresja statystyczna
sieć neuronowa
wielokrotne testy porównawcze
machine learning
nonparametric statistical tests
statistical regression
neural network
multiple comparison tests
Opis:
In the paper we present some guidelines for the application of nonparametric statistical tests and post-hoc procedures devised to perform multiple comparisons of machine learning algorithms. We emphasize that it is necessary to distinguish between pairwise and multiple comparison tests. We show that the pairwise Wilcoxon test, when employed to multiple comparisons, will lead to overoptimistic conclusions. We carry out intensive normality examination employing ten different tests showing that the output of machine learning algorithms for regression problems does not satisfy normality requirements. We conduct experiments on nonparametric statistical tests and post-hoc procedures designed for multiple 1 x N and N x N comparisons with six different neural regression algorithms over 29 benchmark regression data sets. Our investigation proves the usefulness and strength of multiple comparison statistical procedures to analyse and select machine learning algorithms.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 4; 867-881
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kryteria wyboru adekwatnej funkcji trwałości ostrza skrawającego w programach krokowej regresji wielokrotnej. Cz. II – przykład aplikacji
Criteria of selection of tool life adequate function in programs of stepwise multiple regression, part II – Methodics
Autorzy:
Filipowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/404570.pdf
Data publikacji:
2015
Wydawca:
Wydawnictwo AWART
Tematy:
metoda krokowej regresji wielokrotnej
funkcje regresji
analiza statyczna
analiza reszt
stepwise multiple regression
regression equation
uniform scale
tool life
table of differences
statistical analysis of regression
Opis:
W pracy wykorzystano metodę krokowej regresji wielokrotnej, która pozwala wybrać funkcje o możliwie małej liczbie zmiennych niezależnych oraz ich interakcji. Dobór funkcji regresji przedstawiono na przykładzie badań trwałości ostrza z węglika spiekanego podczas skrawania stali C45. Trwałość ostrza ustalono w/g kryterium zużycia VBB na powierzchni przyłożenia ostrza. Badania były wykonywane w/g planu kompozycyjnego pięciopoziomowego dla trzech zmiennych niezależnych: prędkości skrawania vc posuwu na obrót f oraz głębokości skrawania ap. Uzyskane funkcje regresji mają trzy formy: pierwsza - liniową z interakcjami w skali równomiernej, druga, także liniowa lecz z interakcjami w skali logarytmicznej oraz trzecia w formie iloczynowej. Przyjęcie jednej z form funkcji regresji ustala prowadzący badania na podstawie analizy statycznej i analizy reszt.
Method of stepwise multiple regression enable to select a function with the possible smallest number of independent variables and its interactions. Liminal criteria of variables selection were described using stepwise multiple regression program REGSTEP, worked out on the base of work [3], and in well-known program STATISTICA.
Źródło:
Obróbka Metalu; 2015, 4; 40-42
2081-7002
Pojawia się w:
Obróbka Metalu
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wybrane aspekty statystycznych analiz modeli ekonometrycznych w propagacji fal radiowych
Selected aspects of statistical analyses of econometric models in radio wave propagation
Autorzy:
Wilk-Jakubowski, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/530894.pdf
Data publikacji:
2019-03-06
Wydawca:
Państwowa Wyższa Szkoła Zawodowa w Raciborzu
Tematy:
statistical analysis
regression indexes
radio wave propagation
Opis:
The article contains review of selected applications of statistical analyses in technical science to present certain information for model parameters (including significance of regression indexes). The main considerations are pertinent to radio wave propagation in satellite systems.
Źródło:
Eunomia – Rozwój Zrównoważony – Sustainable Development; 2018, 2(95); 81-88
1897-2349
2657-5760
Pojawia się w:
Eunomia – Rozwój Zrównoważony – Sustainable Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Linking process variables and newsprint properties in Mazandaran Wood and paper Industries
Autorzy:
Hadi Moradian, M.
Resalati, H.
Powiązania:
https://bibliotekanauki.pl/articles/779410.pdf
Data publikacji:
2014
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
newsprint
statistical model
PLS regression
process variables
Opis:
Pulp and paper industries have provided great research opportunities to control systems. The objective of this study was to investigate the relationships between 80 process variables of CMP tower and stock preparation, and 17 newsprint quality properties in Mazandaran Wood and Paper Industries (MWPI). After the preparation of two suitable data series considering the time needed for pulp to paper, the relations between process dependent and newsprint independent variables were determined using partial least squares (PLS) regression. As a result, two PLS models were developed. The first model with 4 latent vectors categorized and related CMP tower variables and the second one, through 8 latent vectors connected stock preparation variables with paper properties. PLS regression coefficients determined how much the most influencing process variables impact each paper properties.
Źródło:
Polish Journal of Chemical Technology; 2014, 16, 1; 110-116
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of changes in the tax burden of land plots with the use of multivariate statistical analysis methods
Autorzy:
Dmytrów, Krzysztof
Gnat, Sebastian
Powiązania:
https://bibliotekanauki.pl/articles/424949.pdf
Data publikacji:
2019
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
logistic regression
classification
multivariate statistical analysis
real estate mass appraisal
Opis:
It is believed that the ad valorem tax will increase fiscal burdens. In order to verify this statement, with the use of the Szczecin Algorithm of Real Estates Mass Appraisal, the land plots were appraised and the ad valorem tax was calculated. Next, a training set was sampled, for which the composite variable was calculated by means of three approaches: the TOPSIS method, the Generalised Distance Measure as the composite measure of development (GDM2), and the quasi-TOPSIS. They were the explanatory variables in the logistic regression model. Next, for the test set, changes of tax burden were forecasted. The aim of the research was to check the effectiveness of the presented approach for the estimation of the consequences of introducing the ad valorem tax. The results showed that all three approaches yielded similar results, but GDM2 was the best one. The main finding is that these approaches can be used in the prediction of changes in the tax burden of land plots.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2019, 23, 2; 33-48
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification by multiple regression - a new approach towards the classification of extremes
Autorzy:
Enke, W.
Spekat, A.
Kreienkamp, F.
Powiązania:
https://bibliotekanauki.pl/articles/108605.pdf
Data publikacji:
2016
Wydawca:
Instytut Meteorologii i Gospodarki Wodnej - Państwowy Instytut Badawczy
Tematy:
empirical-statistical downscaling
regression analysis
climate analysis
climate projections
meteorological extremes
Opis:
There are numerous algorithmic classification methods that attempt to address the connections between different scales of the atmosphere, such as EOFs, clustering, and neural nets. However, their relative strength lies in the description of the mean conditions, whereas extremes are poorly covered by them. A novel approach towards the identification of linkages between large-scale atmospheric fields and local extremes of meteorological parameters is presented in this paper. The principle is that a small number of objectively selected fields can be used to circumscribe a local meteorological parameter by way of regression. For each day, the regression coefficients form a kind of pattern which is used for a classification based on similarity. As it turns out, several classes are generated which contain days that constitute extreme atmospheric conditions and from which local meteorological parameters can be computed, yielding an indirect way of determining these local extremes just from large-scale information. The range of applications is large. (i) Not only local meteorological parameters can be subjected to such a regression based classification procedure. It can be extended to extreme indicators, such as threshold exceedances, yielding on the one hand the relevant atmospheric fields to describe those indicators, and on the other hand grouping days with “favourable atmospheric conditions”. This approach can be further extended by investigating networks of measurement stations from a region and describing, e.g., the probability for threshold exceedances at a given percentage of the network. (ii) The method can not only be used as a filtering tool to supply days in the current climate with extreme conditions, identified in an objective way. The method can be applied to climate model projections, using the previously found parameter-specific combinations of atmospheric fields. From those fields, as they constitute the modelled future climate, local time series can be generated which are then analysed with respect to the frequency and magnitude of future extremes. The method has sensitivities (i) due to the degree to which there are connections between large-scale fields and local meteorological parameters (measured, e.g., by the correlation) and (ii) due to the varying quality of the different fields (geopotential, temperature, humidity etc.) projected by the climate model.
Źródło:
Meteorology Hydrology and Water Management. Research and Operational Applications; 2016, 4, 1; 25-39
2299-3835
2353-5652
Pojawia się w:
Meteorology Hydrology and Water Management. Research and Operational Applications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wybrane statystyki odporne
Some Robust Statistical Methods
Autorzy:
Trzpiot, Grażyna
Powiązania:
https://bibliotekanauki.pl/articles/586408.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Estymatory
Metody statystyczne
Modele regresji
Statystyka
Estimators
Regression models
Statistical methods
Statistics
Opis:
Outliers are sample values that cause surprise in relation to the majority of the sample. This is not a pejorative term; outliers may be correct, but they should always be checked for transcription errors. Many robust and resistant methods have been developed since 1960 to be less sensitive to outliers. This methods can be used instead or be even better than classical one. Robust methods were used early in me works (Trzpiot 2009, 2011a, 2011b) as an application in finance and economy. This article has a descriptive character, connected with new book for students.
Źródło:
Studia Ekonomiczne; 2013, 152; 163-173
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predicting length of fatigue cracks by means of machine learning algorithms in the small-data regime
Autorzy:
Badora, Maciej
Sepe, Marzia
Bielecki, Marcin
Graziano, Antonino
Szolc, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2038115.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
empirical models
fatigue cracks
predictive maintenance
regression analysis
small data
statistical learning
turbomachinery
Opis:
In this paper several statistical learning algorithms are used to predict the maximal length of fatigue cracks based on a sample composed of 31 observations. The small-data regime is still a problem for many professionals, especially in the areas where failures occur rarely. The analyzed object is a high-pressure Nozzle of a heavy-duty gas turbine. Operating parameters of the engines are used for the regression analysis. The following algorithms are used in this work: multiple linear and polynomial regression, random forest, kernel-based methods, AdaBoost and extreme gradient boosting and artificial neural networks. A substantial part of the paper provides advice on the effective selection of features. The paper explains how to process the dataset in order to reduce uncertainty; thus, simplifying the analysis of the results. The proposed loss and cost functions are custom and promote solutions accurately predicting the longest cracks. The obtained results confirm that some of the algorithms can accurately predict maximal lengths of the fatigue cracks, even if the sample is small.
Źródło:
Eksploatacja i Niezawodność; 2021, 23, 3; 575-585
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies