Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "stability and convergence" wg kryterium: Temat


Wyświetlanie 1-12 z 12
Tytuł:
Numerical methods for hyperbolic differential functional problems
Autorzy:
Ciarski, R.
Powiązania:
https://bibliotekanauki.pl/articles/255099.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
functional differential equations
stability and convergence
Opis:
The paper deals with the initial boundary value problem for quasilinear first order partial differential functional systems. A general class of difference methods for the problem is constructed. Theorems on the error estimate of approximate solutions for difference functional systems are presented. The convergence results are proved by means of consistency and stability arguments. A numerical example is given.
Źródło:
Opuscula Mathematica; 2008, 28, 1; 29-46
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some problems connected with the absolute stability of explicit one-step methods
Autorzy:
Szyszkowicz, Mieczysław
Powiązania:
https://bibliotekanauki.pl/articles/748597.pdf
Data publikacji:
1985
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Stability and convergence of numerical methods
Opis:
.
Regions of absolute stability for several examples of Runge-Kutta methods, Bobkov methods, Richardson extrapolation of Runge-Kutta methods are investigated. For the Richardson extrapolation of Runge-Kutta methods the method with maximal order of convergence is found.
Źródło:
Mathematica Applicanda; 1985, 13, 26
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effective difference schemes for the heat equation in arbitrary regions
Autorzy:
Dryja, Maksymilian
Powiązania:
https://bibliotekanauki.pl/articles/748525.pdf
Data publikacji:
1982
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Stability and convergence of difference methods,Error bounds
Opis:
.
In this paper the author considers the problem of the heat equation ∂u/∂t−(∂2u/∂x21+∂2u/∂x22)=f(x,t) for x∈Ω and t∈(0,T], u(x,0)=φ(x) for x∈Ω, u(x,t)=0 for x∈∂Ω and t∈[0,T]. He constructs a Crank-Nicolson and an alternating direction difference scheme on a regular mesh with steps hi (i=1,2) and τ. Linear interpolation is used for the approximation of the boundary condition. Besides stability of both schemes error estimates are derived under the condition that the derivatives ∂5u/∂t∂x4i and ∂3u/∂t3 are bounded. These estimates are: maxn∥un−yn∥A≤M(τ2+h3/2)andmaxn∥un−yn∥h≤M(τ2+h2+τh1/2+h5/2/τ). Here h=max(h1,h2), un=u(⋅,nτ), yn is the approximate value of un, ∥u∥2h=(u,u)h, (u,v)h=h1h2∑x∈Ωhu(x)v(x) (Ωh is the set of all mesh points lying in Ω), and ∥u∥2A=(u,Au)h where A is the discrete Laplace operator.
Źródło:
Mathematica Applicanda; 1982, 10, 19
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The optimal explicit unconditionally stable box scheme
Autorzy:
Moszyński, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/747543.pdf
Data publikacji:
1997
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Finite difference methods
Stability and convergence of numerical methods
Opis:
.
The finite difference “box” scheme, (see also [1],[2]), is considered on the simplest possible model of single first order linear hyperbolic equation: ut+mux=0 with constant, coefficient m, and one space variable. The optimal version of the scheme, which is nonoscilating and unconditionally stable with respect to the initial and boundary conditions, is derived in the class of box schemes of the order at, least one. If apropriately iterated, this ścinane may be applied to general systems of quasilinear first order hyperbolic equations in one space variable, as an explicit, unconditionally stable solver. For more than one space variable this solver is applicable via splitting (see [3]).
Źródło:
Mathematica Applicanda; 1997, 26, 40
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Difference method for a nonlinear parabolic equation of second order in two space variables
Autorzy:
Kawecki, Roman
Powiązania:
https://bibliotekanauki.pl/articles/747916.pdf
Data publikacji:
1990
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Finite difference methods
Stability and convergence of numerical methods
Opis:
.
A.C. Reynolds in his paper (1972) proposed a difference parametric method for solving the Fourier problem for a nonlinear parabolic equation of second order in one space variable. The paper presents a generalization of Reynolds’ method for the problem in two space variables with mixed derivatives. In this paper, Fourier problems for a general class of nonlinear parabolic equation, in QT = Q x [0, T], are studied. To solve this problem we construct a finite difference scheme with a real parameter. We prove that the solutions of certain associated finite difference equations are unique and converge to the solution of the initial-boundary value problem with 0(h^2) rate of convergence.
Źródło:
Mathematica Applicanda; 1990, 18, 32
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Differential difference inequalities related to parabolic functional differential equations
Autorzy:
Netka, M.
Powiązania:
https://bibliotekanauki.pl/articles/255915.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
parabolic functional differential equations
method of lines
stability and convergence
Opis:
Initial boundary value problems for nonlinear parabolic functional differential equations are transformed by discretization in space variables into systems of ordinary functional differential equations. A comparison theorem for differential difference inequalities is proved. Sufficient conditions for the convergence of the method of lines is given. Nonlinear estimates of the Perron type for given operators with respect to functional variables are used. Results obtained in the paper can be applied to differential integral problems and to equations with deviated variables.
Źródło:
Opuscula Mathematica; 2010, 30, 1; 95-115
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical approximations of parabolic functional differential equations on unbounded domains
Autorzy:
Baranowska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/745298.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
functional differential equations
stability and convergence
nonlinear estimates of the Perron type
Opis:
The paper is concerned with initial problems for nonlinear parabolic functional differential equations. A general class of difference methods is constructed. A theorem on the error estimate of approximate solutions for difference functional equations of the Volterra type with an unknown function of several variables is presented. The convergence of explicit difference schemes is proved by means of consistency and stability arguments. It is assumed that given function satisfy nonlinear estimates of the Perron type with respect to a functional variable. Results obtained in the paper can be applied to differential integral problems and equations with retarded variables. Numerical examples are presented.
Źródło:
Commentationes Mathematicae; 2007, 47, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical approximations of difference functional equations and applications
Autorzy:
Kamont, Z.
Powiązania:
https://bibliotekanauki.pl/articles/255105.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
functional differential equations
stability and convergence
interpolating operators
nonlinear estimates of Perron type
Opis:
We give a theorem on the error estimate of approximate solutions for difference functional equations of the Volterra type. We apply this general result in the investigation of the stability of difference schemes generated by nonlinear first order partial differential functional equations and by parabolic problems. We show that all known results on difference methods for initial or initial boundary value problems can be obtained as particular cases of this general and simple result. We assume that the right hand sides of equations satisfy nonlinear estimates of the Perron type with respect to functional variables.
Źródło:
Opuscula Mathematica; 2005, 25, 1; 109-130
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Difference functional inequalities and applications
Autorzy:
Szafrańska, A.
Powiązania:
https://bibliotekanauki.pl/articles/255602.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
initial boundary value problems
difference functional inequalities
difference methods
stability and convergence
interpolating operators
error estimates
Opis:
The paper deals with the difference inequalities generated by initial boundary value problems for hyperbolic nonlinear differential functional systems. We apply this result to investigate the stability of constructed difference schemes. The proof of the convergence of the difference method is based on the comparison technique, and the result for difference functional inequalities is used. Numerical examples are presented.
Źródło:
Opuscula Mathematica; 2014, 34, 2; 405-423
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implicit difference methods for infinite systems of hyperbolic functional differential equations
Autorzy:
Szafrańska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/745990.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
initial boundary value problems
difference functional equations
difference methods
stability and convergence
interpolating operators
nonlinear estimates of the Perron type
Opis:
The paper deal with classical solutions of initial boundary value problems for infinite systems of nonlinear differential functional equations. Two types of difference schemes are constructed. First we show that solutions of our differential problem can be approximated by solutions of infinite difference functional schemes. In the second part of the paper we proof that solutions of finite difference systems approximate the solutions of aur differential problem. We give a complete convergence analysis for both types of difference methods. We adopt nonlinear estimates of the Perron type for given functions with respect to the functional variable. The proof of the stability is based on the comparison technique. Numerical examples are presented.
Źródło:
Commentationes Mathematicae; 2010, 50, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Matrices splitting the norm and their applications in the theory of stability of difference schemes
Autorzy:
Pokrzywa, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/747515.pdf
Data publikacji:
1985
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Matrix norms, conditioning, scaling
Norms of matrices, numerical range, applications of functional analysis to matrix theory
Stability and convergence of difference methods
Opis:
.
In a finite-dimensional real or complex linear normed space X there are characterized all the sets of operators A1,...,An which sum up to the identity operator and such that ||Aix||+...+||Anx|=||x|| for all xX. An example of application in the theory of stability of difference schemes is given.
Źródło:
Mathematica Applicanda; 1985, 13, 26
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weighted difference schemes for systems of quasilinear first order partial functional differential equations
Autorzy:
Szafrańska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/747972.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
initial boundary value problems, difference methods, stability and convergence, interpolating operators, error estimates, comparison methods
zagadnienia początkowo-brzegowe, metody różnicowe, stabilność i zbieżność, operatory interpolacyjne, oszacowanie błędu, metody porównawcze.
Opis:
Praca dotyczy zagadnien poczatkowo brzegowych typu Dirichlet’a dlaukładów quasiliniowych równan rózniczkowo-funkcyjnych. Zamieszczona jest konstrukcjawazonych metod róznicowych dla wyjsciowych zagadnien rózniczkowychoraz przeprowadzona jest pełna analiza zbieznosci. Niezbedne załozenia obejmujaoszacowania typu Perrona dla funkcji danych wzgledem argumentów funkcyjnych.Dowód stabilnosci metody róznicowej opiera sie na technice porównawczej. Teoretycznerezultaty zobrazowane sa na przykładzie całkowego równania rózniczkowegooraz równan rózniczkowych z odchylonym argumentem.
The paper deals with initial boundary value problems of the Dirichlet type for system of quasilinear functional differential equations.We investigate weighted difference methods for these problems.A complete convergence analysis of the considered difference methods is given. Nonlinear estimates of the Perron type with respect to functional variables for given functions are assumed. The proof of the stability of difference problems is based on a comparison technique. The results obtained here can be applied to differential integral problems and differential equations with deviated variables.Numerical examples are presented.
Źródło:
Mathematica Applicanda; 2015, 43, 2
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-12 z 12

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies