Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieci neuronowe SVM" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Neural network and artificial immune algorithms for the classification of medical data series
Sieci neuronowe i sieci immunologiczne dla rozpoznawania przypadków medycznych
Autorzy:
Wajs, W.
Powiązania:
https://bibliotekanauki.pl/articles/282174.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
sztuczne sieci neuronowe
sieci immunologiczne
SVM
BPD
artificial neural network
immunological network
Opis:
This paper describes the applicability of artificial immune algorithms. Medical data series classification technique by Artificial Immune Algorithm is used for Neural Network Algorithm input data definitions. Artificial Immune Algorithms is created and trained for the purpose of Arterial Blood Gas parameters classification: pH, PaCO2, PaO2, HCO3. The main goal of this paper is to develop a artificial neural network technique for Arterial Blood Gases short-term prediction. The main question that is considered is how to predict some dynamic parameters that describe blood gases nature. A model of a physical system has an error associated with its predictions due to the dependences of the physical system's output on uncontrollable and unobservable quantities. The use of artificial methods creates the possibilities of obtaining some parameter values on the proper level of probability. This would provide a direct feedback to the clinical staff about the progress of a patient, the success of individual treatments, and quality of care as well as predicting blood gas value.
Dla rozpoznawania przypadków chorobowych, które są opisane numerycznymi danymi wykorzystano metody sztucznej inteligencji. W pracy wykorzystano dwie metody: metodę sztucznych sieci neuronowych oraz metodę sztucznych sieci immunologicznych. Przedstawiono wyniki uzyskane tymi metodami w odniesieniu do przypadków dysplazji oskrzelowo płucnej dla dzieci, których waga była poniżej 1500 g.
Źródło:
Automatyka / Automatics; 2012, 16, 1; 89-96
1429-3447
2353-0952
Pojawia się w:
Automatyka / Automatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
PM 2.5 modelling during paddy stubble burning months using artificial intelligence techniques
Autorzy:
Sangwan, V.
Deswal, S.
Powiązania:
https://bibliotekanauki.pl/articles/2055747.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
PM2.5
ANN
random forest
SVM
pollution
burning
stubble
sztuczne sieci neuronowe
lasy losowe
maszyna wektorów nośnych
zanieczyszczenia
spalanie
ścierń
Opis:
Purpose: In this study, the artificial intelligence techniques namely Artificial Neural Network, Random Forest, and Support Vector Machine are employed for PM 2.5 modelling. The study is carried out in Rohtak city of India during paddy stubble burning months i.e., October and November. The different models are compared to check their respective efficacies and also sensitivity analysis is performed to know about the most vital parameter in PM 2.5 modelling. Design/methodology/approach: The air pollution data of October and November months from the year 2016 to 2020 was collected for the study. The months of October and November are chosen as paddy stubble burning and major festivities using fireworks occur during these months. The untoward data entries viz. zero values, blank data, etc. were eliminated from the gathered data set and thereafter 231 observations of each parameter were left for the conduct of the presented study. The different models i.e., ANN, RF, SVM, etc. had PM 2.5 as an output variable while relative humidity, sulfur dioxide, nitrogen dioxide, nitric oxide, carbon monoxide, ozone, temperature, solar radiation, wind direction and wind speed acted as input variables. The prototypes created from the training data set are verified on the testing data set. A sensitivity analysis is also done to quantify impact of various parameters on output variable i.e., PM 2.5. Findings: The performance of the SVM_RBF based model turned out to be the best with the performance parameters being the coefficient of determination, root mean square error, and mean absolute error. In the sensitivity test, sulphur dioxide (SO2) was adjudged as the most vital variable. Research limitations/implications: The quantification capacity of the generated models may go beyond the used data set of observations. Practical implications: The artificial intelligence techniques provide precise estimation and forecasting of PM 2.5 in the air during paddy stubble burning months of October and November. Originality/value: Unlike the past research work that focus on modelling of various air pollution parameters, this study in specific focuses on the modelling of most vital air pollutant i.e., PM 2.5 that too specifically during the paddy stubble burning months of October and November when the air pollution is at its peak in northern India.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 110, 1; 16--26
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computational intelligence methods in the problem of modelling technical wear of buildings in mining areas
Metody inteligencji obliczeniowej w problemie modelowania stopnia zużycia technicznego budynków na terenach górniczych
Autorzy:
Rusek, J.
Powiązania:
https://bibliotekanauki.pl/articles/385956.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
technical wear
neural networks
support vector machine (SVM)
fuzzy systems
szkody górnicze
zużycie techniczne
sieci neuronowe
systemy rozmyte
Opis:
In the work presented approach with a view to building the model of degree of technical wear of buildings in the mining areas, as well as an indication that the contribution of the consumption on technical factors interact mining and civil construction origin. Set out criteria for the selection and research methodology effects are synthetically summarised existing work in this field. Justified choice of the ϵ-SVR method confronting its advantages to the characteristics of typical neural network.
W artykule zaprezentowano podejście mające na celu budowę modelu przebiegu stopnia zużycia technicznego budynków na terenach górniczych, jak również analizowano, w jakim stopniu na zużycie techniczne oddziałują czynniki górnicze oraz ogólnobudowlane. Przedstawiono kryteria doboru metodyki badań oraz podsumowano efekty dotychczasowych prac w tej dziedzinie. Uzasadniono wybór metody &vepsilon;-SVR, konfrontując jej zalety z własnościami typowych, jednokierunkowych sieci neuronowych. Opisano sposób optymalnego doboru parametrów charakteryzujących złożoność modelu ϵ-SVR oraz wskazano możliwość zastosowania tak utworzonego modelu w systemach ekspertowych.
Źródło:
Geomatics and Environmental Engineering; 2012, 6, 3; 83-91
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Machine-Learning Methods for Assessing Dynamic Resistance of Existing Bridge Structures Subjected to Mining Tremors
Metody uczenia maszynowego w ocenie odporności dynamicznej istniejących obiektów mostowych poddanych wstrząsom górniczym
Autorzy:
Rusek, J.
Powiązania:
https://bibliotekanauki.pl/articles/385657.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
dynamika budowli
uczenie maszynowe
sztuczne sieci neuronowe
SVM
wstrząsy górnicze
odporność dynamiczna
mosty
dynamics of structures
machine learning
Artificial Neural Networks
SVM Support Vector Machine
mining tremors
dynamic resistance
bridges
Opis:
W pracy przedstawiono wyniki badań, których celem było utworzenie modelu pozwalającego na określenie odporności istniejących obiektów mostowych na wpływy wstrząsów górniczych. Podstawą do analiz była utworzona przez autora baza danych o odporności dynamicznej żelbetowych obiektów mostowych poddanych wymuszeniu sejsmicznemu charakterystycznemu dla terenu Legnicko-Głogowskiego Okręgu Miedziowego (LGOM). Odporność dynamiczna każdego obiektu w bazie danych została wyrażona w postaci granicznych wartości przyspieszeń drgań gruntu, jakie dana konstrukcja może przejąć bez zagrożenia bezpieczeństwa. Badania przeprowadzono, wykorzystując metodę Support Vector Machine (SVM) w ujęciu regresyjnym (SVR – Support Vector Regression) oraz sztuczne sieci neuronowe (ANN – Artificial Neural Network). Utworzone w ten sposób modele porównano w aspekcie jakości predykcji oraz uogólniania nabytej wiedzy. Pozwoliło to na wytypowanie metody najbardziej efektywnej pod względem oceny odporności dynamicznej istniejących obiektów mostów.
This paper demonstrates the results of research studies aimed at creating a model that allows to determine the resistance of existing bridge structures to the impact of mining tremors. A database (created by the author of this article) of the dynamic resistance of reinforced concrete bridge structures subjected to seismic excitations commonly occurring in the Legnica-Głogów Copper District (LGOM) formed the basis for the analysis. The dynamic resistance of each structure contained in the database was expressed as the limit values of the acceleration of ground vibrations that may be carried by a given structure without compromising its safety. The study was carried out using the Support Vector Machine (SVM) method in a Support Vector Regression (SVR) approach as well as an Artificial Neural Network (ANN). The models were compared in terms of the quality of the predictions and generalization of the acquired knowledge. This allows to select the most-effective method in evaluating the dynamic resistance of existing bridge structures.
Źródło:
Geomatics and Environmental Engineering; 2018, 12, 1; 109-120
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lung cancer detection using an integration of fuzzy K-Means clustering and deep learning techniques for CT lung images
Autorzy:
Prasad, J. Maruthi Nagendra
Chakravarty, S.
Krishna, M. Vamsi
Powiązania:
https://bibliotekanauki.pl/articles/2173683.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuzzy K-means
artificial neural networks
SVM
support vector machine
crow search optimization algorithm
algorytm rozmytych k-średnich
sztuczne sieci neuronowe
maszyna wektorów wspierających
algorytm optymalizacji wyszukiwania kruków
Opis:
Computer aided detection systems are used for the provision of second opinion during lung cancer diagnosis. For early-stage detection and treatment false positive reduction stage also plays a vital role. The main motive of this research is to propose a method for lung cancer segmentation. In recent years, lung cancer detection and segmentation of tumors is considered one of the most important steps in the surgical planning and medication preparations. It is very difficult for the researchers to detect the tumor area from the CT (computed tomography) images. The proposed system segments lungs and classify the images into normal and abnormal and consists of two phases, The first phase will be made up of various stages like pre-processing, feature extraction, feature selection, classification and finally, segmentation of the tumor. Input CT image is sent through the pre-processing phase where noise removal will be taken care of and then texture features are extracted from the pre-processed image, and in the next stage features will be selected by making use of crow search optimization algorithm, later artificial neural network is used for the classification of the normal lung images from abnormal images. Finally, abnormal images will be processed through the fuzzy K-means algorithm for segmenting the tumors separately. In the second phase, SVM classifier is used for the reduction of false positives. The proposed system delivers accuracy of 96%, 100% specificity and sensitivity of 99% and it reduces false positives. Experimental results shows that the system outperforms many other systems in the literature in terms of sensitivity, specificity, and accuracy. There is a great tradeoff between effectiveness and efficiency and the proposed system also saves computation time. The work shows that the proposed system which is formed by the integration of fuzzy K-means clustering and deep learning technique is simple yet powerful and was effective in reducing false positives and segments tumors and perform classification and delivers better performance when compared to other strategies in the literature, and this system is giving accurate decision when compared to human doctor’s decision.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 3; art. no. e139006
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikatory neuronowe typu SVM w zastosowaniu do klasyfikacji przemieszczeń pionowych na obszarze LGOM
SVM neural classifiers used for classifying vertical displacements in the Legnica-Głogów Copper Mining Area
Autorzy:
Mrówczyńska, M.
Powiązania:
https://bibliotekanauki.pl/articles/394109.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
sieci neuronowe SVM
klasyfikacja
przemieszczenia pionowe
SVM neural networks
classification
vertical displacements
Opis:
W prezentowanym artykule przedstawiono podstawowe zasady budowania i uczenia sieci neuronowych SVM (ang. Support Vector Machine) zwane inaczej metodą (techniką) wektorów podtrzymujących. Sieci SVM znajdują głównie zastosowanie w rozwiązywaniu zadań klasyfikacji danych separowalnych i niesparowalnych liniowo oraz zadań regresji. W ostatnich latach zakres zastosowań tego typu sieci został poszerzony i sieci rozwiązują również takie problemy jak rozpoznawanie sygnałów i obrazów, identyfikacja mowy oraz diagnostyka medyczna. W pracy sieci nieliniowe SVM wykorzystano do klasyfikacji danych nieseparowalnych liniowo w postaci przemieszczeń punktów sieci pomiarowo-kontrolnej reprezentujących obszar, na którym prowadzona jest eksploatacja górnicza. Uczenia sieci neuronowej SVM wymaga implementacji programowania kwadratowego w poszukiwaniu punktu optymalnego funkcji Lagrange'a względem optymalizowanych parametrów. W przypadku danych nieseparowalnych liniowo, metoda SVM pozwala na znalezienie hiperpłaszczyzny, która klasyfikuje obiekty na tyle poprawnie, na ile jest to możliwe i jednocześnie przebiega możliwe daleko od typowych skupień dla każdej z klas. Za pomocą metody SVM można również znaleźć krzywoliniową granicę separacji o dużym marginesie separacji, wykorzystując zabieg podniesienia wymiarowości. Jakość uzyskanych wyników separacji jest uzależniona od przyjętej postaci funkcji jądra.
This article presents basic rules for constructing and training SVM neural networks. SVM neural networks are mainly used for solving tasks involving the classification of linearly and non-linearly separable data, as well as regression tasks. In recent years, the application of these types of networks has expanded, and now they are also used for solving problems such as recognition of signals and pictures, speech identification, and in medical diagnostics. In this analysis non-linear SVM networks were used for classifying linearly non-separable data in the form of vertical displacements of points representing a mining area in a measurement and control network. Training an SVM neural network requires the use of quadrant programming in search of an optimum point of a Lagrangian function in relation to the parameters which are being optimised. In the case of linearly non-separable data, the SVM method makes it possible to find a hyper plane which classifies objects as correctly as possible, and at the same time is located far enough from concentrations typical of each class. By means of raising dimensionality, the SVM method can also be used to find a curvilinear separation boundary with a wide separation margin. The quality of the results obtained depends on the adopted form of the kernel function.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2014, 86; 69-81
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies