Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "seagrass" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Assessing the Shallow Water Habitat Mapping Extracted from High-Resolution Satellite Image with Multi Classification Algorithms
Autorzy:
Nandika, Muhammad Rizki
Ulfa, Azura
Ibrahim, Andi
Purwanto, Anang Dwi
Powiązania:
https://bibliotekanauki.pl/articles/8413878.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
accuracy
coral
seagrass
Maximum Likelihood
Minimum Distance
Support Vector Machine
remote sensing
Opis:
Remote sensing technology is reliable in identifying the distribution of seabed cover yet there are still challenges in retrieving the data collection of shallow water habitats than with other objects on land. Classification algorithms based on remote sensing technology have been developed for application to map benthic habitats, such as Maximum Likelihood, Minimum Distance, and Support Vector Machine. This study focuses on examining those three classification algorithms to retrieve information on the benthic habitat in Pari Island, Jakarta using visual interpretation data for classification, and data field measurements for accuracy testing. This study used five classes of benthic objects, namely sand, sand-seagrass, rubble, seagrass, and coral. The results show how the proposed approach in this study provides an overall good classification of marine habitat with an accuracy produced 63.89–81.95%. The Support Vector Machine algorithm produced the highest accuracy rate of about 81.95%. The Support Vector Machine algorithm at a very high spatial resolution is considered to be capable of identifying, monitoring, and performing the rapid assessment of benthic habitat objects.
Źródło:
Geomatics and Environmental Engineering; 2023, 17, 2; 69--87
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
GC-MS Analysis of n-hexane extracts of Marine Seagrass Posidonia oceanica leaves, rhizomes and roots Collected from Benghazi beach Libya
Autorzy:
Elabbar, Fakhri
Alasply, Abdulsalam
Powiązania:
https://bibliotekanauki.pl/articles/35507523.pdf
Data publikacji:
2024
Wydawca:
Radomskie Towarzystwo Naukowe
Tematy:
Posidonia oceanica
seagrass
phytochemistry
GC-MS
gas chromatography coupled with mass spectrometry
Libya
trawa morska
fitochemia
chromatografia gazowa sprzężona ze spektrometrią mas
Libia
Opis:
Posidonia oceanica seagrass is endemic to the Mediterranean, and has very little information about volatile organic compounds. The plant was collected from Garyounis Beach in Benghazi, east of Libya, in September 2019. Plant parts, leaves, rhizomes, and roots were extracted using a Soxhlet extractor with Hexane. The compounds were characterized by gas chromatography-mass spectrometry. the extract's chemical constituents were de-convoluted using AMDIS software (www.amdis.net), and the mass spectra of the compounds spectra were explained by fragmentation pattern and matched to authentic standard spectra from Wiley and the NSIT Library database. The results revealed sixteen compounds, dominated by nine long-chain hydrocarbons, three long-chain fatty acids, and a single long-chain ketone. This is the first discovery of 3-ethyl-5-(2ethyl-butyl-octadecane, 6,10,14-trimethylpentadecan-2-one, phytol, and phytyl acetate from this plant.
Źródło:
Scientiae Radices; 2024, 3, 1; 1-8
2956-4808
Pojawia się w:
Scientiae Radices
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies