Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Assessing the Shallow Water Habitat Mapping Extracted from High-Resolution Satellite Image with Multi Classification Algorithms

Tytuł:
Assessing the Shallow Water Habitat Mapping Extracted from High-Resolution Satellite Image with Multi Classification Algorithms
Autorzy:
Nandika, Muhammad Rizki
Ulfa, Azura
Ibrahim, Andi
Purwanto, Anang Dwi
Powiązania:
https://bibliotekanauki.pl/articles/8413878.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
accuracy
coral
seagrass
Maximum Likelihood
Minimum Distance
Support Vector Machine
remote sensing
Źródło:
Geomatics and Environmental Engineering; 2023, 17, 2; 69--87
1898-1135
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Remote sensing technology is reliable in identifying the distribution of seabed cover yet there are still challenges in retrieving the data collection of shallow water habitats than with other objects on land. Classification algorithms based on remote sensing technology have been developed for application to map benthic habitats, such as Maximum Likelihood, Minimum Distance, and Support Vector Machine. This study focuses on examining those three classification algorithms to retrieve information on the benthic habitat in Pari Island, Jakarta using visual interpretation data for classification, and data field measurements for accuracy testing. This study used five classes of benthic objects, namely sand, sand-seagrass, rubble, seagrass, and coral. The results show how the proposed approach in this study provides an overall good classification of marine habitat with an accuracy produced 63.89–81.95%. The Support Vector Machine algorithm produced the highest accuracy rate of about 81.95%. The Support Vector Machine algorithm at a very high spatial resolution is considered to be capable of identifying, monitoring, and performing the rapid assessment of benthic habitat objects.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies