Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "rozmyta sieć neuronowa" wg kryterium: Temat


Wyświetlanie 1-11 z 11
Tytuł:
A fuzzy neural network for knowledge acquisition in complex time series
Autorzy:
Kasabov, N.
Kim, J.
Kozma, R.
Powiązania:
https://bibliotekanauki.pl/articles/205889.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
logika rozmyta
sieć neuronowa rozmyta
układ dynamiczny
adaptation
computational neural net
fuzzy logic
fuzzy neural net
knowledge acquisition
time-series and dynamical system
Opis:
A novel fuzzy neural network, called FuNN, is applied here for time-series modeling. FuNN models have several features that make them well suited to a wide range of knowledge engineering applications. These strengths include fast and accurate learning, good generalisation capabilities, excellent explanation facilities in the form of semantically meaningful fuzzy rules, and the ability to accomodate both numerical data and existing expert knowledge about the problem under consideration. We investigate the effectiveness of the proposed neuro-fuzzy hybrid architectures for manipulating the future behaviour of nonlinear dynamical systems and interpreting fuzzy if-then rules. A well-known example of Box and Jenkins is used as a benchmark time series in the proposed modelling approach and the other modelling approach. Finally, experimental results and comparisons with the other popular neuro-fuzzy inference system, namely Adaptive Network-based Fuzzy Inference System (ANFIS) are also presented.
Źródło:
Control and Cybernetics; 1998, 27, 4; 593-611
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Expert System Coupled With a Hierarchical Structure of Fuzzy Neural Networks for Fault Diagnosis
Autorzy:
Calado, J. M. F.
Costa, I. S.
Powiązania:
https://bibliotekanauki.pl/articles/908283.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
rozpoznanie błędu
wykrywanie błędu
system ekspertowy
sieć neuronowa rozmyta
fault diagnosis
fault detection
fault isolation
shallow knowledge
deep knowledge
expert system
fuzzy neural network
abrupt faults
incipient faults
Opis:
An on-line fault diagnosis system, designed to be robust to the normal transient behaviour of the process, is described. The overall system consists of an expert system cascade with a hierarchical structure of fuzzy neural networks, corresponding to a multi-stage fault detection and isolation system. The fault detection is performed through the expert system by means of fault detection heuristic rules, generated from deep and shallow knowledge of the process under consideration. If a fault is detected, the hierarchical structure of fuzzy neural networks starts and it performs the fault isolation task. The structure of this diagnosis system was designed to allow for the diagnosis of single and multiple simultaneous abrupt and incipient faults from only single abrupt fault symptoms. Also, it combines the advantages of both fuzzy reasoning and neural networks learning capacity. A continuous binary distillation column has been used as a test bed of the current approach. Single, double and triple simultaneous abrupt faults, as well as incipient faults, have been considered. The preliminary results obtained show a good accuracy, even in the case of multiple faults.
Źródło:
International Journal of Applied Mathematics and Computer Science; 1999, 9, 3; 667-687
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Extraction of fuzzy rules using deterministic annealing integrated with ε-insensitive learning
Autorzy:
Czabański, R.
Powiązania:
https://bibliotekanauki.pl/articles/908395.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system rozmyty
sieć neuronowa
sieć neuronowa rozmyta
ekstrakcja reguł
fuzzy systems
neural networks
neuro-fuzzy systems
rules extraction
deterministic annealing
Opis:
A new method of parameter estimation for an artificial neural network inference system based on a logical interpretation of fuzzy if-then rules (ANBLIR) is presented. The novelty of the learning algorithm consists in the application of a deterministic annealing method integrated with ε-insensitive learning. In order to decrease the computational burden of the learning procedure, a deterministic annealing method with a “freezing” phase and ε-insensitive learning by solving a system of linear inequalities are applied. This method yields an improved neuro-fuzzy modeling quality in the sense of an increase in the generalization ability and robustness to outliers. To show the advantages of the proposed algorithm, two examples of its application concerning benchmark problems of identification and prediction are considered.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2006, 16, 3; 357-372
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial intelligence in technical diagnostics
Sztuczna inteligencja w diagnostyce technicznej
Autorzy:
Korbicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/327534.pdf
Data publikacji:
2008
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
detekcja uszkodzeń
odporność
próg adaptacyjny
sieć neuronowa
sieć neuronowo-rozmyta
programowanie genetyczne
diagnostyka techniczna
fault detection
robustness
adaptive threshold
neural networks
neuro-fuzzy networks
genetic programming
technical diagnostics
Opis:
The paper deals with the problems of robust fault detection using soft computing techniques, particularly neural networks (Group Method of Data Handling, GMDH), neuro-fuzzy networks (Takagi-Sugeno (T-S) model) and genetic programming. The model-based approach to Fault Detection and Isolation (FDI) is considered. The main objective is to show how to employ the bounded-error approach to determine the uncertainty defined as a confidence range for the model output, the adaptive thresholds can be defined. Finally, the presented approaches are tested on a servoactuator being an FDI benchmark in the DAMADICS project.
W artykule rozpatruje się problemy odpornej detekcji uszkodzeń z wykorzystaniem technik obliczeń inteligentnych, a w szczególności sieci neuronowych (Group Method of Data Handling, GMDH), sieci neuronowo-rozmytych (model Takagi-Sugeno) oraz programowania genetycznego. Rozpatruje się układ detekcji i lokalizacji uszkodzeń z modelem. Głównym celem jest pokazanie jak zastosować metodę ograniczonego błędu do wyznaczenia niepewności modeli neuronowych i rozmytych. Pokazano, że korzystając z wyznaczonych niepewnych modeli obliczeń inteligentnych zdefiniowanych w postaci przedziałów ufności dla wyjścia modelu można zdefiniować adaptacyjny próg decyzyjny. W ostatniej części efektywność rozpatrywanych podejść ilustrowana jest na przykładzie układu diagnostyki inteligentnego urządzenia siłownik-ustawnik-zawór z projektu DAMADICS.
Źródło:
Diagnostyka; 2008, 2(46); 7-16
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design parameters optimisation of ROPAX ferry using seakeeping characteristics and additional wave resistance
Optymalizacja parametrów projektowych promu pasażersko-samochodowego pod kątem wybranych właściwości morskich i dodatkowego oporu na fali
Autorzy:
Cepowski, T.
Powiązania:
https://bibliotekanauki.pl/articles/257284.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
właściwości morskie
prom ro-ro
kołysanie boczne
przyspieszenie poprzeczne
dodatkowy opór na fali
parametry projektowe
sztuczna sieć neuronowa
optymalizacja wielokryterialna
metoda Pareto
logika rozmyta
sea-keeping
ro-pax ferry
rolling
motion sickness index
additional wave resistance
design parameters
artificial neuron network
optimisation
Pareto method
fuzzy logic
Opis:
This paper presents the multi-criteria design parameters of the optimisation of the ROPAX ferry using sea-keeping characteristics and additional wave resistance. The design criteria were formed using the method based on deterministic scenario and the partial objective functions were determined as artificial neuron networks. The design parameters' optimisation was carried out with the Pareto method. The best design variants were chosen using the elements of fuzzy logic that allowed, among other things, to present design quality with linguistic variables. This approach allowed choosing the best variant concerning all criteria at the same time.
W artykule przeprowadzono wielokryterialną optymalizację parametrów projektowych promu pasażersko-samochodowego pod kątem wybranych właściwości morskich i dodatkowego oporu statku na fali. Kryteria projektowe sformułowano posługując się metodą opartą na scenariuszach deterministycznych, natomiast funkcje celów cząstkowych wyznaczono w postaci sztucznych sieci neuronowych. Optymalizację parametrów projektowych przeprowadzono metodą Pareto. Do wyboru najlepszych wariantów projektowych wykorzystano elementy logiki rozmytej, co pozwoliło m.in. na przedstawienie walorów projektu za pomocą zmiennych lingwistycznych. Takie podejście umożliwiło wybór wariantu najlepszego pod kątem wszystkich kryteriów jednocześnie.
Źródło:
Problemy Eksploatacji; 2008, 2; 149-158
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting return products in an integrated forward/reverse supply chain utilizing an ANFIS
Autorzy:
Kumar, D. T.
Soleimani, H.
Kannan, G.
Powiązania:
https://bibliotekanauki.pl/articles/329809.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
artificial neural network
adaptive network based fuzzy
inference system
closed loop supply chain
forecasting methods
fuzzy neural network
sztuczna sieć neuronowa
system wnioskowania
metoda prognozowania
sieć neuronowa rozmyta
Opis:
Interests in Closed-Loop Supply Chain (CLSC) issues are growing day by day within the academia, companies, and customers. Many papers discuss profitability or cost reduction impacts of remanufacturing, but a very important point is almost missing. Indeed, there is no guarantee about the amounts of return products even if we know a lot about demands of first products. This uncertainty is due to reasons such as companies’ capabilities in collecting End-of-Life (EOL) products, customers’ interests in returning (and current incentives), and other independent collectors. The aim of this paper is to deal with the important gap of the uncertainties of return products. Therefore, we discuss the forecasting method of return products which have their own open-loop supply chain. We develop an integrated two-phase methodology to cope with the closed-loop supply chain design and planning problem. In the first phase, an Adaptive Network Based Fuzzy Inference System (ANFIS) is presented to handle the uncertainties of the amounts of return product and to determine the forecasted return rates. In the second phase, and based on the results of the first one, the proposed multi-echelon, multi-product, multi-period, closed-loop supply chain network is optimized. The second-phase optimization is undertaken based on using general exact solvers in order to achieve the global optimum. Finally, the performance of the proposed forecasting method is evaluated in 25 periods using a numerical example, which contains a pattern in the returning of products. The results reveal acceptable performance of the proposed two-phase optimization method. Based on them, such forecasting approaches can be applied to real-case CLSC problems in order to achieve more reliable design and planning of the network.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 3; 669-682
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Building intrusion detection systems based on the basis of methods of intellectual analysis of data
Budowa systemów wykrywania ataków na podstawie metod inteligentnej analizy danych
Autorzy:
Tolіupa, S.
Brailovskyi, M.
Parkhomenko, M.
Powiązania:
https://bibliotekanauki.pl/articles/952707.pdf
Data publikacji:
2018
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
intrusion detection system
attack
fuzzy logic
neural network
system wykrywania włamań
atak
logika rozmyta
sieć neuronowa
Opis:
Nowadays, with the rapid development of network technologies and with global informatization of society problems come to the fore ensuring a high level of information system security. With the increase in the number of computer security incidents, intrusion detection systems (IDS) started to be developed rapidly.Nowadays the intrusion detection systems usually represent software or hardware-software solutions, that automate the event control process, occurring in an information system or network, as well as independently analyze these events in search of signs of security problems. A modern approach to building intrusion detection systems is full of flaws and vulnerabilities, which allows, unfortunately, harmful influences successfully overcome information security systems. The application of methods for analyzing data makes it possible identification of previously unknown, non-trivial, practically useful and accessible interpretations of knowledge necessary for making decisions in various spheres of human activity. The combination of these methods along with an integrated decision support system makes it possible to build an effective system for detecting and counteracting attacks, which is confirmed by the results of imitation modeling.
W chwili obecnej szybki rozwój technologii sieciowych i globalnej informatyzacji społeczeństwa uwypukla problemy związane z zapewnieniem wysokiego poziomu bezpieczeństwa systemów informacyjnych. Wraz ze wzrostem liczby incydentów komputerowych związanych z bezpieczeństwem nastąpił dynamiczny rozwój systemów wykrywania ataków. Obecnie systemy wykrywania włamań i ataków to zazwyczaj oprogramowanie lub sprzętowo-programowe rozwiązania automatyzujące proces monitorowania zdarzeń występujących w systemie informatycznym lub sieci, a także samodzielnie analizujące te zdarzenia w poszukiwaniu oznak problemów bezpieczeństwa. Nowoczesne podejście do budowy systemów wykrywania ataków na systemy informacyjne jest pełne wad i słabych punktów, które niestety pozwalają szkodliwym wpływom na skuteczne pokonanie systemów zabezpieczania informacji. Zastosowanie metod inteligentnej analizy danych pozwala wykryć w danych nieznane wcześniej, nietrywialne, praktycznie użyteczne i dostępne interpretacje wiedzy niezbędnej do podejmowania decyzji w różnych sferach ludzkiej działalności. Połączenie tych metod wraz ze zintegrowanym systemem wspomagania decyzji umożliwia zbudowanie skutecznego systemu wykrywania i przeciwdziałania atakom, co potwierdzają wyniki modelowania.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2018, 8, 4; 28-31
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A modified particle swarm optimization procedure for triggering fuzzy flip-flop neural networks
Autorzy:
Kowalski, Piotr A.
Słoczyński, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2055168.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fuzzy neural network
fuzzy flip-flop neuron
particle swarm optimization
training procedure
sieć neuronowa rozmyta
optymalizacja rojem cząstek
procedura szkoleniowa
Opis:
The aim of the presented study is to investigate the application of an optimization algorithm based on swarm intelligence to the configuration of a fuzzy flip-flop neural network. Research on solving this problem consists of the following stages. The first one is to analyze the impact of the basic internal parameters of the neural network and the particle swarm optimization (PSO) algorithm. Subsequently, some modifications to the PSO algorithm are investigated. Approximations of trigonometric functions are then adopted as the main task to be performed by the neural network. As a result of the numerical verification of the problem, a set of rules are developed that can be helpful in constructing a fuzzy flip-flop type neural network. The obtained results of the computations significantly simplify the structure of the neural network in relation to similar conditions known from the literature.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 4; 577--586
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation and Analysis of Sintering Furnace Temperature Based on Fuzzy Neural Network Control
Autorzy:
Chaoxin, Zou
Rong, Li
Zhiping, Xie
Ming, Su
Jingshi, Zeng
Xu, Ji
Xiaoli, Ye
Ye, Wang
Powiązania:
https://bibliotekanauki.pl/articles/1837792.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuzzy neural network
furnace
sintering
temperature control
PID
sieć neuronowa rozmyta
piec
spiekanie
kontrola temperatury
Opis:
Aiming at the problems of delay and couple in the sintering temperature control system of lithium batteries, a fuzzy neural network controller that can solve complex nonlinear temperature control is designed in this paper. The influence of heating voltage, air inlet speed and air inlet volume on the control of temperature of lithium battery sintering is analyzed, and a fuzzy control system by using MATLAB toolbox is established. And on this basis, a fuzzy neural network controller is designed, and then a PID control system and a fuzzy neural network control system are established through SIMULINK. The simulation shows that the response time of the fuzzy neural network control system compared with the PID control system is shortened by 24s, the system stability adjustment time is shortened by 160s, and the maximum overshoot is reduced by 6.1%. The research results show that the fuzzy neural network control system can not only realize the adjustment of lithium battery sintering temperature control faster, but also has strong adaptability, fault tolerance and anti-interference ability.
Źródło:
Archives of Foundry Engineering; 2021, 21, 1; 23-30
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation and Analysis of Sintering Furnace Temperature Based on Fuzzy Neural Network Control
Autorzy:
Chaoxin, Zou
Rong, Li
Zhiping, Xie
Ming, Su
Jingshi, Zeng
Xu, Ji
Xiaoli, Ye
Ye, Wang
Powiązania:
https://bibliotekanauki.pl/articles/1837849.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuzzy neural network
furnace
sintering
temperature control
PID
sieć neuronowa rozmyta
piec
spiekanie
kontrola temperatury
Opis:
Aiming at the problems of delay and couple in the sintering temperature control system of lithium batteries, a fuzzy neural network controller that can solve complex nonlinear temperature control is designed in this paper. The influence of heating voltage, air inlet speed and air inlet volume on the control of temperature of lithium battery sintering is analyzed, and a fuzzy control system by using MATLAB toolbox is established. And on this basis, a fuzzy neural network controller is designed, and then a PID control system and a fuzzy neural network control system are established through SIMULINK. The simulation shows that the response time of the fuzzy neural network control system compared with the PID control system is shortened by 24s, the system stability adjustment time is shortened by 160s, and the maximum overshoot is reduced by 6.1%. The research results show that the fuzzy neural network control system can not only realize the adjustment of lithium battery sintering temperature control faster, but also has strong adaptability, fault tolerance and anti-interference ability.
Źródło:
Archives of Foundry Engineering; 2021, 21, 1; 23-30
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ventilation control of the new safe confinement of the Chornobylnuclear power plant based on neuro-fuzzy networks
Kontrola wentylacji nowej bezpiecznej powłoki czarnobylskiej elektrowni jądrowej oparta na rozmytych sieciach neuronowych
Autorzy:
Loboda, Petro
Starovit, Ivan S.
Shushura, Oleksii M
Havrylko, Yevhen V.
Saveliev, Maxim V.
Sachaniuk-Kavets’ka, Natalia
Neprytskyi, Oleksandr
Oralbekova, Dina
Mussayeva, Dinara
Powiązania:
https://bibliotekanauki.pl/articles/28875033.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
New Safe Confinement
ventilation management
neuro-fuzzy network
information technology
fuzzy logic
digital twin
Nowa Bezpieczna Powłoka
zarządzanie wentylacją
rozmyta sieć neuronowa
technologia informacyjna
logika rozmyta
cyfrowy bliźniak
Opis:
The accident at the Chornobyl Nuclear Power Plant (ChNPP) in Ukraine in 1986 became one of the largest technological disasters in human history. During the accident cleanup, a special protective structure called the Shelter Object was built to isolate the destroyed reactor from the environment. However, the planned operational lifespan of the Shelter Object was only 30 years. Therefore, with the assistance of the international community, a new protective structure called the New Safe Confinement (NSC) was constructed and put into operation in 2019. The NSC is a large and complex system that relies on a significant number of various tools and subsystems to function. Due to temperature fluctuations and the influence of wind, hydraulic processes occur within the NSC, which can lead to the release of radioactive aerosols into the environment. The personnel of the NSC prevents these leaks, including through ventilation management. Considering the long planned operational term of the NSC, the development and improvement of information technologies for its process automation is a relevant task. The purpose of this paper is to develop a method for managing the ventilation system of the NSC based on neuro-fuzzy networks. An investigation of the current state of ventilation control in the NSC has been conducted, and automation tools for the process have been proposed. Using an adaptive neuro-fuzzy inference system (ANFIS) and statistical data on the NSC's operation, neuro-fuzzy models have been formed, which allows to calculate the expenses of the ventilation system using the Takagi-Sugeno method. The verification of the proposed approaches on a test data sample demonstrated sufficiently high accuracy of the calculations, confirming the potential practical utility in decision-making regarding NSC’s ventilation management. The results of this paper can be useful in the development of digital twins of the NSC for process management and personnel training.
Awaria w Czarnobylskiej Elektrowni Jądrowej (ChNPP), która miała miejsce w Ukrainie w 1986 roku, stała się jedną z największych katastrof technologicznych w historii ludzkości. Podczas likwidacji awarii zbudowano specjalną strukturę ochronną – Obiekt "Ukrycie", mającą na celu izolację zniszczonego reaktora od otoczenia. Jednak planowany okres eksploatacji sarkofagu "Ukrycie" wynosił tylko 30 lat, dlatego przy wsparciu społeczności międzynarodowej zbudowano nową strukturę ochronną – "Nowa Bezpieczna Powłoka" (NSC), która została oddana do użytku w 2019 roku. NSC jest dużym i skomplikowanym systemem, którego funkcjonowanie zapewnia znaczna liczba różnych narzędzi i podsystemów. Ze względu na zmienne temperatury i wpływ wiatru, w NSC zachodzą procesy hydrauliczne, które mogą prowadzić do uwolnienia promieniotwórczych aerozoli do otoczenia. Personel NSC zapobiega tym wyciekom, między innymi poprzez zarządzanie wentylacją. W związku z długim planowanym okresem eksploatacji NSC, istotnym zadaniem jest rozwój i doskonalenie technologii informatycznych dla automatyzacji procesów. Celem pracy jest opracowanie metody zarządzania systemem wentylacji NSC opartej na rozmytych sieciach neuronowych. Przeprowadzono badania istniejącego stanu rozwiązywania problemów zarządzania wentylacją NSC oraz wybrano narzędzia do automatyzacji procesu. Za pomocą adaptacyjnego systemu wnioskowania neuro-rozmytego (ANFIS) i danych statystycznych dotyczących funkcjonowania NSC, stworzono modele neuro-rozmyte, które pozwalają na kalkulację kosztów systemu wentylacyjnego metodą Takagi-Sugeno. Weryfikacja zaproponowanych podejść na próbce kontrolnej danych wykazała wystarczająco wysoką dokładność obliczeń, co potwierdza możliwość ich praktycznego zastosowania w procesie podejmowania decyzji dotyczących zarządzania wentylacją NSC. Wyniki pracy mogą być również przydatne przy tworzeniu cyfrowe bliźniaków NSC w celu zarządzania procesami i szkolenia personelu.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 4; 114--118
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-11 z 11

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies