- Tytuł:
- Impact of Enterococcus italicus ONU547 on the growth and acclimatization of micropropagated Rubus fruticosus L. and Paulownia tomentosa Steud. plants to ex vitro conditions
- Autorzy:
-
Tytarenko, Nadiia
Tesliuk, Nataliia
Merlich, Andrii
Haertle, Thomes
Ivanytsia, Volodymyr - Powiązania:
- https://bibliotekanauki.pl/articles/16712861.pdf
- Data publikacji:
- 2023
- Wydawca:
- Polska Akademia Nauk. Czasopisma i Monografie PAN
- Tematy:
-
Paulownia tomentosa
Rubus fruticosus
ex vitro acclimatization
Enterococcus italicus
antagonism
plant growth-promoting bacteria - Opis:
- Clonal micropropagation is an effective method for plant reproduction, applicable in both scientific and industrial domains. However, a significant number of microclones are lost during the ex vitro acclimatization process. To address this, the introduction of beneficial microorganisms into the rhizosphere of micropropagated plants could have a positive effect on the survival rates and external characteristics of acclimatized plantlets. The aim of this study was to determine the protective and growth promoting potential of Enterococcus italicus ONU547 and its effect on micropropagated plants during acclimatization. The antagonistic activity of the bacteria was determined using the agar block method. Lepidium sativum L. seeds were inoculated with bacterial suspensions at concentrations of 106, 107, and 108 CFU/ml. Subsequently, the roots of the microclones were treated with suspensions of 106 and 107 CFU/ml, and biometric characteristics were measured. The results demonstrated antagonistic properties against various phytopathogenic fungi, including Aspergillus niger, Cladosporium cladosporioides, Alternaria alternata, Alternaria tenuissima, Rhizoctonia cerealis, Penicillium expansum, and Paecilomyces variotii. Inoculation of L. sativum L. seeds resulted in improved germination rates, increased root numbers, and enhanced root and shoot lengths. Similarly, the effects of the studied bacteria on Rubus fruticosus L. and Paulownia tomentosa Steud. during the acclimatization stage led to higher survival rates, increased shoot lengths, greater node numbers, and larger leaf areas. A concentration of 107 CFU/ml was identified as optimal for inoculating the microclones. The findings indicate that E. italicus ONU547 holds promise for the inoculation of micropropagated plants during the acclimatization process. Further research is recommended to establish the specific interaction mechanisms between these bacteria and plants.
- Źródło:
-
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology; 2023, 104, 3; 301-313
0860-7796 - Pojawia się w:
- BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology
- Dostawca treści:
- Biblioteka Nauki