Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "pineal gland" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Calcium ions in the pig pineal gland - an ultracytochemical study
Jony wapniowe w szyszynce swini - badania ultracytochemiczne
Autorzy:
Lewczuk, B
Bulc, M.
Prusik, M.
Przybylska-Gornowicz, B.
Powiązania:
https://bibliotekanauki.pl/articles/14383.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Warmińsko-Mazurski w Olsztynie / Polskie Towarzystwo Magnezologiczne im. Prof. Juliana Aleksandrowicza
Tematy:
pig
pineal gland
calcium ion
ultracytochemical analysis
calcium ion distribution
Opis:
The aim of the study was to analyze the distribution of calcium ions in the pig pineal gland at the level of electron microscopy. The investigations were performed on the pineals obtained immediately after slaughter (performed between 11:30 and 12:00 a.m.) from 4-month-old gilts. The fixation procedures were conducted with the use of pyroantimonate, which reacted with calcium ions and formed electron dense precipitates. The precipitates were found both in the intercellular spaces and in cells - pinealocytes, gial cells, endothelial cells and fibroblasts. The precipitates were much more numerous in the intercellular spaces than in the cells. Amount and distribution of precipitates differed significantly between pinealocytes, therefore two types of cells were distinguished. The first type of pinealocytes included cells containing a small or moderate amount of precipitates. They were usually characterized by light or dark cytoplasm and large variability in number and structure of dense bodies. Pinealocytes classified to the second type possessed large or very large content of precipitates. These cells were characterized by electron dense cytoplasm and showed the presence of numerous dense bodies. In both types of pinealocytes, precipitates were present in the nucleus and in the cytoplasm. In nuclei, precipitates were numerous in nucleoplasma and rather infrequently noted between membranes of the nuclear envelope. In the cytoplasm deposits were found in mitochondria, vesicles and cisterns of smooth endoplasmic reticulum, in the Golgi apparatus and in cytosol. The amount of precipitates in glial cells, endothelial cells and fibrocytes was lower than in pinealocytes.
Celem pracy była analiza ultracytochemiczna rozmieszczenia jonów wapniowych w szyszynce świni domowej. Badano szyszynki pobrane bezpośrednio po uboju (wykonanym między godz. 11:30 a 12:00) od loszek w wieku ok. 4 miesięcy. Do utrwalania gruczołów zastosowano pyroantymonian potasu, co umożliwiło związanie jonów wapniowych w postaci elektronowo gęstych precypitatów, których rozmieszczenie określono za pomocą mikroskopu elektronowego. Precypitaty występowały w przestrzeni międzykomórkowej oraz w komórkach: pinealocytach, komórkach glejowych, komórkach śródbłonka naczyń włosowatych i fibrocytach. Zawartość złogów pyroantymonianu wapnia była znacznie większa w przestrzeni zewnątrzkomórkowej niż wewnątrz komórek. Ze względu na ilość i lokalizację precypitatów możliwe było wyróżnienie dwóch typów pinealocytów. Pierwszy z nich stanowiły komórki zawierające małą lub średnią ilość precypitatów. Komórki te charakteryzowały się elektronowo jasną lub elektronowo gęstą cytoplazmą, a skład ciałek gęstych był zróżnicowany pod względem ilościowym i jakościowym. Drugi typ pinealocytów stanowiły komórki z dużą lub bardzo dużą zawartością precypitatów. Najczęściej charakteryzowały się one elektronowo gęstą cytoplazmą oraz obecnością bardzo licznych ciałek gęstych. W obu typach pinealocytów precypitaty występowały zarówno w jądrze komórkowym, jak i w cytoplazmie. W jądrze stosunkowo liczne precypitaty o zróżnicowanych wymiarach stwierdzono w obrębie chromatyny, natomiast jedynie sporadycznie obserwowano je w przestrzeni między błonami otoczki jądrowej. W cytoplazmie precypitaty występowały w mitochondriach, pęcherzykach i cysternach siateczki śródplazmatycznej gładkiej, strukturach aparatu Golgiego oraz w cytoplazmie podstawowej. Zawartość precypitatów w komórkach glejowych, komórkach środbłonka oraz fibrocytach była znacznie mniejsza niż w pinealocytach.
Źródło:
Journal of Elementology; 2007, 12, 4; 335-346
1644-2296
Pojawia się w:
Journal of Elementology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
p19 detected in the rat retina and pineal gland is a guanylyl cyclase-activating protein (GCAP).
Autorzy:
Dejda, Agnieszka
Matczak, Izabela
Gorczyca, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/1043693.pdf
Data publikacji:
2002
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
pineal gland
rat
guanylyl cyclase
calcium-binding proteins
guanylyl cyclase-activating proteins
retina
Opis:
The Ca2+-dependent activation of retina-specific guanylyl cyclase (retGC) is mediated by guanylyl cyclase-activating proteins (GCAPs). Here we report for the first time detection of a 19 kDa protein (p19) with GCAP properties in extracts of rat retina and pineal gland. Both extracts stimulate synthesis of cGMP in rod outer segment (ROS) membranes at low (30 nM) but not at high (1 mM) concentrations of Ca2+. At low Ca2+, immunoaffinity purified p19 activates guanylyl cyclase(s) in bovine ROS and rat retinal membranes. Moreover, p19 is recognized by antibodies against bovine GCAP1 and, similarly to other GCAPs, exhibits a Ca2+-dependent electrophoretic mobility shift.
Źródło:
Acta Biochimica Polonica; 2002, 49, 4; 899-905
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rola melatoniny w patofizjologii i terapii migreny
Role of melatonin in pathophysiology and therapy of migraine
Autorzy:
Zduńska, Anna
Kochanowski, Jan
Powiązania:
https://bibliotekanauki.pl/articles/1057781.pdf
Data publikacji:
2012
Wydawca:
Medical Communications
Tematy:
headache
melatonin
migraine
migraine pathophysiology
pineal gland
migrena
melatonina
patofizjologia migreny
bóle głowy
szyszynka
Opis:
Migraine is one of the most common neurological disorders. In Poland, approximately 4 million individuals suffer from migraine headaches. A migraine headache may last 4-72 hours, is throbbing, moderate to severe in intensity, usually unilateral and is associated with nausea, vomiting, and hypersensitivity to light and sound. Lack of biological markers and inter-individual variations result in problems with correct diagnosis. Pathophysiological basis of migraine remains unclear, but recent research including neuroimaging and genetic studies, has significantly advanced our understanding of migraine pathophysiology. Since over 30 years, there is ongoing research on the role of melatonin – hormone enabling adaptation of the organism to cyclic changes in environmental conditions – in the pathophysiology of migraine. Experimental studies revealed manifold associations between secretion of melatonin and migraine, but this correlation has not been clearly determined. Several studies confirmed altered secretion of melatonin in patients with migraine. Available data assessing melatonin profile in persons with migraine depend on nature of headache (episodic or chronic) and temporal relationship of sampling to headache attack (ictal or interictal). Currently, there are only few reports concerning attempts at using melatonin in the treatment of migraine. Largescale, multicentre trials are necessary to define principles of use of melatonin in the treatment of migraine.
Migrena jest jednym z najczęstszych schorzeń neurologicznych. W Polsce cierpi na nią około czterech milionów osób. Napad migreny zwykle trwa od 4 godzin do 72 godzin i charakteryzuje się wystąpieniem silnego, zazwyczaj połowiczego, pulsującego bólu głowy z towarzyszącymi nudnościami, wymiotami, nadwrażliwością na światło i dźwięki. Brak biologicznych markerów choroby oraz jej zmienny przebieg u różnych chorych powodują trudności w postawieniu właściwej diagnozy. Patofizjologia migreny pozostaje nadal niejasna, ale dzięki licznym badaniom, w tym neuroobrazowym i genetycznym, jesteśmy coraz bliżej pełnego jej poznania. Od ponad trzydziestu lat prowadzone są badania nad rolą melatoniny – hormonu umożliwiającego przystosowanie organizmu do cyklicznie zmieniających się warunków środowiska, w patofizjologii migreny. W badaniach doświadczalnych wykazano liczne powiązania pomiędzy sekrecją melatoniny a patofizjologią migreny, jednak zależność ta nie została jednoznacznie określona. Wiele innych badań dowodzi również zaburzeń sekrecji melatoniny u pacjentów z migreną. Wyniki dostępnych w piśmiennictwie badań oceniających profil melatoniny u pacjentów z migreną zależą od charakteru bólu głowy (epizodyczny czy przewlekły) oraz czasu wykonania pomiaru stężenia melatoniny (w trakcie napadu bólu głowy czy w okresie międzynapadowym). Aktualnie nieliczne są doniesienia dotyczące prób zastosowania melatoniny w terapii migreny. Przeprowadzenie zakrojonych na szeroką skalę, wieloośrodkowych badań jest niezbędne do ustalenia zasad stosowania melatoniny w leczeniu migreny.
Źródło:
Aktualności Neurologiczne; 2012, 12, 1; 50-56
1641-9227
2451-0696
Pojawia się w:
Aktualności Neurologiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Melatonina, wielofunkcyjna cząsteczka sygnałowa w organizmie ssaka: miejsca biosyntezy, funkcje, mechanizmy działania
Melatonin, multifunctional signal molecule in mammals: origin, functions, mechanisms of action
Autorzy:
Skwarło-Sońta, Krystyna
Majewski, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/1032921.pdf
Data publikacji:
2010
Wydawca:
Łódzkie Towarzystwo Naukowe
Tematy:
szyszynka
melatonina
receptory
rytm dobowy
przekaźnictwo sygnału
immunomodulacja
zapalenie
pineal gland
melatonin
receptors
circadian rhythm
signal
transduction
immunomodulation
inflammation
Opis:
Methoxyindole hormone - melatonin (MEL) is produced and released by the mammalian pineal gland in a circadian rhythm exhibiting a low level during the day and an elevation at night, strictly dependent on the environmental lighting conditions. The main MEL function is, therefore, to synchronize diurnal rhythms of several physiological processes and for the diurnally active species (including humans) it gives information on the beginning of sleepiness. For the nocturnal species, however, elevated MEL level serves as a signal to start locomotor and feeding activity. In seasonal breeders the pineal gland function synchronizes the time of gonadal development and sexual activity with the external conditions in a way that progeny appears in the optimal climatic moment. MEL is produced also extrapineally, e.g. in the gastro-intestinal tract and bone marrow, where it exerts a protective effect due to its activity as an antioxidant and a potent free radical scavenger. Being both lipid and water soluble, MEL is able to cross biological barriers and, therefore, it uses several cellular mechanism to exert its physiological activity, including membrane and nuclear receptors, proteins of the cytoskeleton, mitochondrial membrane stabilization. MEL is also involved in immunomodulation, the effects are different and dependent on numerous factors, nevertheless, its immunostimulatory activity is generally well accepted. Additionally, activated immune cells are able to produce MEL acting in an auto- and paracrine way. As an efficient antioxidant MEL exerts the anti-inflammatory effect, which, reciprocally, modulates the pineal gland biosynthetic activity adapting it to temporary endogenous conditions.
Szyszynka ssaków produkuje i wydziela do krwi melatoninę (MEL) w rytmie dobowym, którego cechą charakterystyczną jest wysoki poziom w nocy niski w dzień, a czas nocnej syntezy zależy od warunków świetlnych otoczenia. Dzięki temu MEL synchronizuje wiele procesów fizjologicznych przebiegających rytmicznie, a jako chemiczny sygnał ciemności przekazuje gatunkom o aktywności dziennej (w tym ludziom) informację o rozpoczęciu pory snu. Gatunki aktywne w nocy inaczej interpretują sygnał melatoninowy. Dla zwierząt rozmnażających się sezonowo informacja niesiona przez MEL stanowi sygnał do takiej synchronizacji funkcji rozrodczych z warunkami klimatycznymi, aby potomstwo mogło pojawić się w optymalnym momencie. Melatonina powstaje także pozaszyszynkowo, np. w układzie pokarmowym, gdzie pełni funkcje ochronne, związane z aktywnym zmiataniem wolnych rodników i właściwościami antyoksydacyjnymi. Jako cząsteczka amfifilowa może przekraczać bariery biologiczne, dlatego swoje efekty może wywierać za pośrednictwem wielu różnych mechanizmów takich jak: wiązanie z receptorami błonowymi i jądrowymi, białkami cytozolowymi, stabilizowanie błony mitochondrialnej. MEL wykazuje działanie immunomodulacyjne, zależne od wielu czynników, choć zasadniczo wydaje się być czynnikiem wspomagającym odporność, a aktywowane komórki odpornościowe także syntetyzują MEL działającą auto- i parakrynowo. Dzięki właściwościom antyoksydacyjnym pełni istotną rolę przeciwzapalną, z kolei toczący się proces zapalny moduluje aktywność biosyntetyczną szyszynki, dostosowując je do aktualnych warunków w organizmie.
Źródło:
Folia Medica Lodziensia; 2010, 37, 1; 15-55
0071-6731
Pojawia się w:
Folia Medica Lodziensia
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies