Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "perfectness" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
On the structure of certain nontransitive diffeomorphism groups on open manifolds
Autorzy:
Kowalik, A.
Lech, J.
Michalik, I.
Powiązania:
https://bibliotekanauki.pl/articles/254822.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
foliated manifold
bounded group
conjugation-invariant norm
group of diffeomorphisms
commutator
perfectness
uniform perfectness
Opis:
It is shown that in some generic cases the identity component of the group of leaf preserving diffeomorphisms (with not necessarily compact support) on a foliated open manifold is perfect. Next, it is proved that it is also bounded, i.e. bounded with respect to any bi-invariant metric. It follows that the group is uniformly perfect as well.
Źródło:
Opuscula Mathematica; 2012, 32, 3; 511-520
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the uniform perfectness of equivariant diffeomorphism groups for principal g manifolds
Autorzy:
Fukui, K.
Powiązania:
https://bibliotekanauki.pl/articles/255255.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
uniform perfectness
principal G manifold
equivariant diffeomorphism
Opis:
We proved in [K. Abe, K. Fukui, On commutators of equivariant diffeomorphisms, Proc. Japan Acad. 54 (1978), 52–54] that the identity component [formula] of the group of equivariant Cr-diffeomorphisms of a principal G bundle M over a manifold B is perfect for a compact connected Lie group G and [formula] In this paper, we study the uniform perfectness of the group of equivariant Cr-diffeomorphisms for a principal G bundle M over a manifold B by relating it to the uniform perfectness of the group of Cr-diffeomorphisms of B and show that under a certain condition, [formula] is uniformly perfect if B belongs to a certain wide class of manifolds. We characterize the uniform perfectness of the group of equivariant Cr-diffeomorphisms for principal G bundles over closed manifolds of dimension less than or equal to 3, and in particular we prove the uniform perfectness of the group for the 3-dimensional case and r ≠ 4.
Źródło:
Opuscula Mathematica; 2017, 37, 3; 381-388
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the perfectness of C∞ s-diffeomorphism groups on a foliated manifold
Autorzy:
Lech, J.
Powiązania:
https://bibliotekanauki.pl/articles/255053.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
group of C∞-diffeomorphisms
perfectness
commutator
foliation
Opis:
The notion of Cr,s and C∞,s-diffeomorphisms is introduced. It is shown that the identity component of the group of leaf preserving C∞,s-diffeomorphisms with compact supports is perfect. This result is a modification of the Mather and Epstein perfectness theorem.
Źródło:
Opuscula Mathematica; 2008, 28, 3; 313-324
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Commutators of diffeomorphisms of a manifold with boundary
Autorzy:
Rybicki, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/1294405.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Group of diffeomorphisms
simplicity
perfectness
manifold with boundary
fixed point theory
Opis:
A well known theorem of Herman-Thurston states that the identity component of the group of diffeomorphisms of a boundaryless manifold is perfect and simple. We generalize this result to manifolds with boundary. Remarks on $C^r$-diffeomorphisms are included.
Źródło:
Annales Polonici Mathematici; 1998, 68, 3; 199-210
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koncepcja etyki naukowej i wizje postępu moralnego w ujęciu liderów polskiej myśli pozytywistycznej
The Concept of Scientific Ethics and Visions of Moral Progress by Main Representatives of Polish Positivist Thought
Autorzy:
Tyburski, Włodzimierz
Powiązania:
https://bibliotekanauki.pl/articles/29519189.pdf
Data publikacji:
2022
Wydawca:
Wydawnictwo Uniwersytetu Śląskiego
Tematy:
positivist movement
scientific ethics
theoretic ethics
practical ethics
idea of progress
moral progress
freedom
perfectness
usefulness
Opis:
The article presents one of the components of the intellectual legacy of Polish positivism, a philosophical position which proposed a new attitude towards ethical issues. Its representatives put forward the notion of scientific ethics, reducing moral philosophy to it. They strongly emphasized their critical attitude towards traditional ethics, for which there was no place in the positivist model of science, and proposed a distinction between theoretical and practical ethics. Their project was motivated by an ambition to make ethics into jurisprudence, a discipline whose accuracy would make it similar to other sciences. Their efforts were consistently motivated by the idea of making ethics into an empirical and applied science. This scientific ethics would fulfill the important task of forming a set of moral requirements, which, by referring to moral knowledge (“ethology”), would have a chance of influencing the conduct of individuals and society. The new ethics was expected to contribute to the change in social morality and thus greatly support moral progress, an issue which was hotly debated. All positivists subscribed to the idea of progress, including that of morality; however, some differences can be discerned in how they defined progress. Some defined it in realistic categories, while others focused on optimistic visions of the future. Among the first advocates of scientific ethics and of the idea of moral progress, differences notwithstanding, were Aleksander Świętochowski, Julian Ochorowicz, Feliks Bogacki, Władysław Kozłowski, and Bolesław Prus. The article gives an overview of some of their views.
Źródło:
Folia Philosophica; 2022, 48; 1-25
1231-0913
2353-9445
Pojawia się w:
Folia Philosophica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Duality and some topological properties of vector-valued function spaces
Autorzy:
Feledziak, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/746589.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
vector-valued function spaces
locally solid topologies
KB-spaces
Levy topologies
Lebesgue topologies
order dual
order continuous dual
perfectness
Opis:
Let \(E\) be an ideal of \(L^0\) over \(\sigma\)-finite measure space \((\Omega, \Sigma, \mu)\) and let \((X, \| \cdot \|_X)\) be a real Banach space. Let \(E(X)\) be a subspace of the space \(L^0(X)\) of \(\mu\)-equivalence classes of all strongly \(\Sigma\)-measurable functions \(f\colon \Omega \to X\) and consisting of all those \(f\in L^0(X)\), for which the scalar function \(\tilde{f} = \|f (\cdot)\|_X\) belongs to \(E\). Let \(E\) be equipped with a Hausdorff locally convex-solid topology \(\xi\) and let \(\xi\) stand for the topology on \(E(X)\) associated with \(\xi\). We examine the relationship between the properties of the space \((E(X), \xi)\) and the properties of both the spaces \((E, \xi)\) and \((X, \|· \|_X)\). In particular, it is proved that \(E(X)\) (embedded in a natural way) is an order closed ideal of its bidual iff \(E\) is an order closed ideal of its bidual and \(X\) is reflexive. As an application, we obtain that \(E(X)\) is perfect iff \(E\) is perfect and \(X\) is reflexive.
Źródło:
Commentationes Mathematicae; 2008, 48, 1
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies