Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "oleate" wg kryterium: Temat


Tytuł:
Implication and collecting mechanism of emulsified sodium vegetable oleate on fluorite flotation
Autorzy:
Sun, L.
Liu, J.
Liao, Y.
Powiązania:
https://bibliotekanauki.pl/articles/109761.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
emulsified sodium vegetable oleate
collector
fluorite flotation
sodium oleate
Opis:
The emulsified sodium vegetable oleate (ESVO) was prepared with low-cost vegetable oleate. Using ESVO as a collector, the flotation performance of fluorite had been investigated comparing with sodium oleate at a temperature of 20 ± 2 °C. The results of flotation showed that ESVO had better collecting performance than the sodium oleate. The interaction mechanism of these two collectors with fluorite was studied by the zeta potential, FTIR spectra and laser grain-size tests. Both ESVO and sodium oleate changed fluorite zeta potential by electrostatic attraction and chemical adsorption, and generated calcium carboxylate on the fluorite surface. Moreover, it was concluded that higher fluorite recovery was a consequence of ESVO smaller surface tension comparing to sodium oleate.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 2; 211-219
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Flotation behaviour and surface characteristic of anosovite in a sodium oleate solution
Autorzy:
Wang, Y.
Wen, S.
Zhang, J.
Wu, D.
Xian, Y.
Shen, H.
Powiązania:
https://bibliotekanauki.pl/articles/110766.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
anosovite
sodium oleate
flotation
adsorption
Opis:
Properties of anosovite in titanium slag, anosovite flotation response in a collector solution of sodium oleate, and adsorption behaviour of sodium oleate on the mineral surface were studied in the present work using XRD, Raman spectra, flotation tests, zeta potential analysis, FTIR and XPS. The results show that the anosovite crystal contains magnesium, and its chemical composition is Mg0.09Ti2.91O5. The chemical bonds on the anosovite surface mainly comprise Ti-O bonds. Micro-flotation tests indicate that anosovite has better floatability at a wide pH range and the recovery reaches 88% at pH=6, when the dosage of sodium oleate is only 4·10−6 mol/dm3. The point of zero charge of anosovite was determined near pH 3.2 by the zeta potential measurement. In the flotation process, chemical adsorption occurs between the carboxyl of sodium oleate and the titanium sites on the anosovite surface.
Źródło:
Physicochemical Problems of Mineral Processing; 2017, 53, 2; 714-723
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Molecular Interactions in Binary Organic Liquid Mixtures Containing Ethyl Oleate and Ethanol at 2MHz Frequency
Autorzy:
Manukonda, S.
Kumar, G. P.
Babu, C. P.
Powiązania:
https://bibliotekanauki.pl/articles/412193.pdf
Data publikacji:
2015
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Ethyl Oleate
Ethanol
molecular interactions
adiabatic compressibility
Opis:
Molecular interactions of binary mixtures of Ethanol with a new organic compound Ethyl Oleate are investigated at a constant ultrasonic frequency of 2MHz under the temperature range of 303.15K-318.15K. The effect of mole fraction of Ethyl Oleate on velocity of sound wave and the density and viscosity of binary mixtures at various temperatures were studied. The effects on density (ρ), viscosity (η), adiabatic compressibility (βad), inter molecular free length (Lf) and internal pressure (Пi) also was studied.
Źródło:
International Letters of Chemistry, Physics and Astronomy; 2015, 40; 17-23
2299-3843
Pojawia się w:
International Letters of Chemistry, Physics and Astronomy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Interaction of sulfuric acid with dolomite (104) surface and its impact on the adsorption of oleate anion: a DFT study
Autorzy:
Cao, Qinbo
Zou, Heng
Chen, Xiumin
Yu, Xingcai
Powiązania:
https://bibliotekanauki.pl/articles/1449558.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
dolomite
adsorption
oleate
depressor
density functional theory
Opis:
Sulfuric acid $(H_2SO_4)$ is a specific depressor for apatite rather than for dolomite. The $H_2SO_4$ treated dolomite can still be floated effectively by oleate. However, the role of $H_2SO_4$ in the adsorption of oleate onto dolomite surface remains unclear. In this work, density functional theory calculations were conducted to probe the interactions among sulfate anion ($SO_4^{2−}$), oleate anion and the dolomite surface. The adsorption behaviors of $SO_4^{2−}$ anion onto the perfect and $CO_3$-defect dolomite surfaces were compared. Such results show that $SO_4^{2−}$ anion could only adsorb onto the defective dolomite surface, where it bonded with a $Ca$ atom. The remaining $Ca$ and $Mg$ atoms at the defect site could further react with the oleate anion, generating new $Ca$/$Mg–O$ ionic bond. In this regard, oleate and $SO_4^{2−}$ anions may both present on the dolomite surface. This phenomenon accounts for the flotation of $H_2SO_{4-}$treated dolomite.
Źródło:
Physicochemical Problems of Mineral Processing; 2020, 56, 1; 34-42
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An atomic scale investigation of the adsorption of sodium oleate on Ca2+ activated quartz surface
Autorzy:
Gong, Guichen
Liu, Jie
Han, Yuexin
Zhu, Yimin
Powiązania:
https://bibliotekanauki.pl/articles/949736.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
quartz
sodium oleate
Ca(OH)+
density functional theory
Opis:
In this study, the surface properties and flotation behavior of quartz with NaOl as a collector in the presence of Ca2+ ions were investigated using density functional theory (DFT) calculations in conjunction with flotation tests, adsorption experiments, zeta potential measurements, and solution chemistry calculations. The results of the flotation and adsorption tests proved that Ca2+ promoted the flotation recovery and the adsorption density of sodium oleate on quartz at pH > 8. Zeta potential analyses and solution chemistry calculations demonstrated that Ca(OH)+ was the functional species which activated quartz. DFT calculations indicated that O atoms dominated the quartz (101) surface, and great electrostatic repulsion and space resistance existed between the surface and oleate anion.The spontaneous adsorption of H2O and OH- on the (101) surface made quartz surfaces hydrated and hydroxylated, and resulted in the hydrophilicity of quartz. The adsorption of Ca(OH)+ on quartz (101) surface was more favorable and able to repulse the water film, which decreased the electrostatic repulsion and space resistance, and further facilitated the adsorption of oleate anion. During the activating and collecting adsorption processes, electron transition occurred along the O1—Ca—O2 path, implying Ca(OH)+ acted as an intermediary and electron donator in the activation process.
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 2; 426-436
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Flotation separation of cassiterite and chlorite using carboxymethyl cellulose as a depressant
Autorzy:
Hu, Yang
Ying, Luo Hong
Zhang, Ying
Wei, Lu Kuan
Hao, Guan Zhen
Powiązania:
https://bibliotekanauki.pl/articles/2175422.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
cassiterite
chlorite
sodium oleate
carboxymethyl cellulose
selective inhibition
Opis:
The nature and mechanism of interaction between carboxymethyl cellulose (CMC) with cassiterite (and chlorite surfaces) and their effects on the flotation separation process of cassiterite (from chlorite) were investigated by micro-flotation tests, surface adsorption experiments, zeta potential measurements, solution chemical calculation, infrared spectroscopy, and X-ray photo-electron spectroscopy (XPS). The results from single mineral tests revealed that CMC exhibited good selective inhibition effects with cassiterites and chlorites. When the dosage was 12.5 mg/L at pH 8, cassiterite and chlorite recovery was 92.2% and 6.3%, respectively. The artificial mixed ore test revealed that the flotation separation effect was the best when the dosage of CMC was 6.5 mg/L. Cassiterite used during the studies was 75.1% pure. The recovery was 82.8%. The interaction between CMC and the cassiterite surface led to a shift in the zeta potential toward the negative direction. CMC was weakly adsorbed on the cassiterite surface. There was no significant impact on the subsequent collection of sodium oleate. The concentration of C atom increased post interaction, and the potential shifted toward the negative direction. Characteristic CMC peaks were observed at this point. Hydrogen bonds and weak chemisorption interactions between CMC and chlorite affected the interaction between sodium oleate and the chlorite surface. It also affected the flotation results. The cassiterite and chlorite were separated effectively.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 6; art. no. 155141
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Relationship between flotation and Fe/Mn ratio of wolframite with benzohydroxamic acid and sodium oleate as collectors
Autorzy:
Yang, S.
Feng, Q.
Qiu, X.
Gao, Y.
Xie, Z.
Powiązania:
https://bibliotekanauki.pl/articles/109666.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
wolframite
flotation
collector mixture
benzohydroxamic acid
sodium oleate
Opis:
Several studies revealed that flotation of wolframite changes with different Fe/Mn ratios, but they did not reach a consensus. This relationship in the presence of benzohydroxamic acid (BHA) and sodium oleate (NaOl) as collectors was studied in this paper through comparison of probability distribution curve of wolframite with different Fe/Mn ratios between the raw ore and the flotation concentrate, the pure mineral flotation and solution chemistry of flotation. The results showed that wolframite with high Fe/Mn ratio showed higher flotation with BHA as a collector while the flotation behavior of wolframite was completely opposite with NaOl as a collector. Besides, the calculations of chemical equilibrium in the solution were plotted as ΔG°-pH graphs. The results revealed that the flotation of wolframite may be determined by the interaction between BHA and ferric(II) ion or between NaOl and manganous ion. From the perspective of collector mixture, the results also explain the high collecting capability of the BHA/NaOl collector mixture, which can be defined as “functional complementation”.
Źródło:
Physicochemical Problems of Mineral Processing; 2014, 50, 2; 747-758
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selective flotation of witherite from calcite using potassium chromate as a depressant
Autorzy:
Qiu, Yangshuai
Zhang, Lingyan
Jiao, Xuan
Guan, Junfang
Li, Ye
Qian, Yupeng
Powiązania:
https://bibliotekanauki.pl/articles/110784.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
witherite
calcite
selective flotation
sodium oleate
potassium chromate
Opis:
Witherite has been widely used as an industrial and environmental source of barium, with calcite being the primary associated carbonate mineral. However, few studies have been conducted to effectively concentrate witherite from barium ores. In this work, with the treatment of potassium chromate (K2CrO4) and sodium oleate (NaOL), witherite was selectively separated from calcite through selective flotation at different pH conditions. In addition, contact angle, Zeta potential, adsorption and X-ray photoelectron spectroscopy measurements were performed to characterize the separation mechanisms. The results demonstrated that NaOL had a strong collecting ability for both witherite and calcite; nevertheless, witherite could be effectively selected from calcite with the highest recovery at pH 9 in the presence of K2CrO4. From the XPS measurements, NaOL and K2CrO4 were found to be primarily attached to the surfaces of witherite and calcite through chemisorption. The presence of K2CrO4 on the surface of calcite adversely influenced the NaOL adsorption, which could make the flotation separation efficient and successful.
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 2; 565-574
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dispersion of sodium phytate on muscovite and the implications for arsenopyrite flotation
Autorzy:
Zou, Dan
Wang, Zhen
Zhao, Kaile
Xu, Ying
Powiązania:
https://bibliotekanauki.pl/articles/2175449.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
cassiterite
chlorite
sodium oleate
carboxymethyl cellulose
selective inhibition
Opis:
The effective flotation separation of sulfides and sliming silicate minerals is always a difficult problem. In this paper, the selective flotation of arsenopyrite from muscovite was studied by using sodium phytate (SP) as dispersant, and the mechanism was investigated through SEM/EDS, zeta potential, FTIR and XPS measurements. Single mineral flotation results showed that with the increasing isoamyl xanthate (IAX) dosage the recovery of arsenopyrite increased, until 8×10−5 mol/L IAX (79.40% recovery, pH=7), after that it decreased slightly. While muscovite floated poorly at any IAX concentration. For the mixed minerals, arsenopyrite recovery was only 54.63% while that of muscovite was 42.70%, which was attributed to the coverage of muscovite on arsenopyrite surface. When 6×10−5 mol/L SP was added into the mixed minerals system, the recovery of arsenopyrite recovered to 68.26% while that of muscovite was 8.48% (approximate the value of the single mineral). SEM/EDS results showed that SP could disperse muscovite and prevented its coverage on arsenopyrite surface. Zeta potential results showed that the electrokinetic potential of muscovite and arsenopyrite decrease from -26.60mV to -39.01 mV and from -26.90 mV to -27.84 mV at pH=7, respectively. It was obvious that the negatively charged phytate ions selectively adsorbed on the surface of muscovite. FTIR and XPS resulted co-proved the chemisorption of SP with active sites on muscovite while arsenopyrite spectrum did not change significantly, which was consistent with flotation and zeta potential results. The selective adsorption of SP on muscovite compared to arsenopyrite was responsible for the effective separation of them.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 6; art. no. 154951
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study on separation of fine-particle ilmenite and mechanism using flocculation flotation with sodium oleate and polyacrylamide
Autorzy:
Peng, Yang
Xiao, Junhui
Deng, Bing
Wang, Zhen
Liu, Nengyun
Yang, Daoguang
Ding, Wei
Chen, Tao
Wu, Qiang
Powiązania:
https://bibliotekanauki.pl/articles/1450088.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
sodium oleate
polyacrylamide
synergistic effect
ilmenite
flocculation flotation
Opis:
In this paper, sodium oleate, polyacrylamide, soluble starch and sodium carboxymethyl cellulose were used as flocculants to study the flocculation and sedimentation behavior of microfine ilmenite. Sedimentation test shows that sodium oleate and polyacrylamide have good flocculation effect on ultrafine ilmenite. The flocculation rate of ilmenite can be further improved by the combination of sodium oleate and polyacrylamide. It was found that both flocculants could generate chemical adsorption with ilmenite surface, and they all react with $Fe^{3+}$ on ilmenite surface. However, sodium oleate reacts with $Fe^{3+}$ to form a water-insoluble iron oleate precipitate which coats the surface of the ilmenite and hinders the action of polyacrylamide and the remaining $Fe^{3+}$. This problem can be avoided by adding polyacrylamide followed by sodium oleate, and the flotation recovery can be increased significantly.
Źródło:
Physicochemical Problems of Mineral Processing; 2020, 56, 1; 161-172
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies