Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neuro-fuzzy inference system" wg kryterium: Temat


Wyświetlanie 1-11 z 11
Tytuł:
Forecasting the Flow Coefficient of the River Basin Using Adaptive Fuzzy Inference System and Fuzzy SMRGT Method
Autorzy:
Gunal, Ayse Yeter
Mehdi, Ruya
Powiązania:
https://bibliotekanauki.pl/articles/27323840.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
ANFIS
adaptive neuro-fuzzy inference system
SMRGT
flow coefficient
fuzzy logic
surface water
Opis:
In hydrology and water resources engineering, predicting the flow coefficient is a crucial task that helps estimate the precipitation resulting in a surface flow. Accurate flow coefficient prediction is essential for efficient water management, flood control strategy development, and water resource planning. This investigation calculated the flow coefficient using models based on Simple Membership functions and fuzzy Rules Generation Technique (SMRGT) and an Adaptive Neuro-Fuzzy Inference System (ANFIS) model. The fuzzy logic methods are used to model the intricate connections between the inputs and the output. Statistical parameters such as the coefficient of determination (R2), the root mean square error (RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE) were used to evaluate the performance of models. The statistical tests outcome for the SMRGT model was (RMSE:0.056, MAE:1.92, MAPE:6.88, R2:0.996), and for the ANFIS was (RMSE:0.96, MAE:2.703, MAPE:19.97, R2:0.8038). According to the findings, the SMRGT, a physics-based model, exhibited superior accuracy and reliability in predicting the flow coefficient compared to ANFIS. This is attributed to the SMRGT’s ability to integrate expert knowledge and domain-specific information, rendering it a viable solution for diverse issues.
Źródło:
Journal of Ecological Engineering; 2023, 24, 7; 96--107
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of littoral drift with adaptive neuro-fuzzy inference system
Ocena dryfu morskiego z wykorzystaniem systemu ANFIS [Adaptive Neuro-Fuzzy Inference System]
Autorzy:
Sabet, M S
Naseri, M.A.
Sabet, H.S.
Powiązania:
https://bibliotekanauki.pl/articles/81613.pdf
Data publikacji:
2010
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
littoral sand drift
coastal zone
adaptive neuro-fuzzy inference system
validation
physical process
database
Opis:
The amount of sand moving parallel to a coastline forms a prerequisite for many harbor design projects. Such information is currently obtained through various empirical formulae. Despite so many works in the past, an accurate and reliable estimation of the rate of sand drift has still remained a problem. It is a non-linear process and can be described by chaotic time-series. The current study addresses this issue through the use of Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS is about taking an initial fuzzy inference system (FIS) and tuning it with a back propagation algorithm based on the collection of input-output data. ANFIS was developed to predict the sand drift from a variety of causative variables. The structure and algorithm of ANFIS for predicting the rate of sand drift is described. The Adaptive Neuro-Fuzzy Inference System was validated by confi rming its consistency with a database of specifi ed physical process.
W artykule przedstawiono adaptację systemu ANFIS do oceny wielkości dryfu fal piaskowych poruszających się wzdłuż wybrzeża morskiego. Pomimo wielu informacji o charakterze ilościowym oraz jakościowym zebranych w badaniach terenowych oraz opracowanych wzorów empirycznych opisujących analizowane zjawisko, autorzy widzą potrzebę stosowania symulacji zjawiska za pomocą metod numerycznych. Takie możliwości daje omówiony w pracy system ANFIS.
Źródło:
Annals of Warsaw University of Life Sciences - SGGW. Land Reclamation; 2010, 42, 1; 159-167
0208-5771
Pojawia się w:
Annals of Warsaw University of Life Sciences - SGGW. Land Reclamation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling of Plastic Flow Behaviour of Metals in the Hot Deformation Process Using Artificial Intelligence Methods
Autorzy:
Mrzygłód, Barbara
Łukaszek-Sołek, Aneta
Olejarczyk-Wożeńska, Izabela
Pasierbiewicz, Karolina
Powiązania:
https://bibliotekanauki.pl/articles/2174622.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hot deformation
Inconel 718
rheological model
forming process
neuro-fuzzy inference system
odkształcanie na gorąco
model reologiczny
proces formowania
Opis:
Hot deformation of metals is a widely used process to produce end products with the desired geometry and required mechanical properties. To properly design the hot forming process, it is necessary to examine how the tested material behaves during hot deformation. Model studies carried out to characterize the behaviour of materials in the hot deformation process can be roughly divided into physical and mathematical simulation techniques. The methodology proposed in this study highlights the possibility of creating rheological models for selected materials using methods of artificial intelligence, such as neuro-fuzzy systems. The main goal of the study is to examine the selected method of artificial intelligence to know how far it is possible to use this method in the development of a predictive model describing the flow of metals in the process of hot deformation. The test material was Inconel 718 alloy, which belongs to the family of austenitic nickel-based superalloys characterized by exceptionally high mechanical properties, physicochemical properties and creep resistance. This alloy is hardly deformable and requires proper understanding of the constitutive behaviour of the material under process conditions to directly enable the optimization of deformability and, indirectly, the development of effective shaping technologies that can guarantee obtaining products with the required microstructure and desired final mechanical properties. To be able to predict the behaviour of the material under non-experimentally tested conditions, a rheological model was developed using the selected method of artificial intelligence, i.e. the Adaptive Neuro-Fuzzy Inference System (ANFIS). The source data used in these studies comes from a material experiment involving compression of the tested alloy on a Gleeble 3800 thermo-mechanical simulator at temperatures of 900, 1000, 1050, 1100, 1150oC with the strain rates of 0.01 - 100 s-1 to a constant true strain value of 0.9. To assess the ability of the developed model to describe the behaviour of the examined alloy during hot deformation, the values of yield stress determined by the developed model (ANFIS) were compared with the results obtained experimentally. The obtained results may also support the numerical modelling of stress-strain curves.
Źródło:
Archives of Foundry Engineering; 2022, 22, 3; 41--52
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie ANFIS w analizie wyników badań gruntów
Application of the ANFIS to analysis of results from soil testings
Autorzy:
Daniszewska, E
Powiązania:
https://bibliotekanauki.pl/articles/391234.pdf
Data publikacji:
2014
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
adaptacyjny system neuronowo-rozmyty
logika rozmyta
trójosiowe badanie gruntu
prędkość ścinania
adaptive neuro-fuzzy inference system
fuzzy logic
soil triaxial testing
shear speed
Opis:
Adaptacyjny system wnioskowania neuronowo-rozmytego ANFIS (Adaptive Neuro-Fuzzy Inference System) w programie Matlab posłużył modelowaniu i określaniu relacji między prędkością ścinania a parametrami wytrzymałościowymi gruntu. Sprawdzono możliwości i umiejętności narzędzia ANFIS w interpretacji wyników badań trójosiowego ściskania iłów pobranych z okolic Olsztyna. Model neuronowo-rozmyty został zbudowany na podstawie zbioru wartości, którymi dysponowano po szeregu badań eksperymentalnych, łącznie z wartościami parametrów wytrzymałościowych gruntu na ścinanie. Baza danych wykorzystana do modelowania neuronowo-rozmytego składa się z 6 różnych parametrów gruntowych dla każdej z 12 prędkości ścinania stosowanych podczas badań trójosiowych. Umiejętność uczenia zweryfikowano na bazie danych testowych - model neuronowo-rozmyty zbudowany został z zestawów szkoleniowych, a dokładność została zweryfikowana przez zestawy testów, z którymi model miał do czynienia po raz pierwszy. Wyniki z modelu ANFIS nie odbiegały znacznie od tych, które zostały uzyskane bezpośrednio z badań fizycznych. System ANFIS okazał się narzędziem niezwykle uniwersalnym i nieskomplikowanym w obsłudze. Pozwolił uwzględnić wieloaspektowość wzajemnych relacji parametrów gruntowych.
The article was analyzed in order to test applicability and capability of the ANFIS tool used for interpretation of results of triaxial shear tests on loamy soils sampled near Olsztyn. The ANFIS system in the Matlab software programme was used to model and determine relationships between the shear stress and soil resistance parameters in a triaxial shear test apparatus. It has been demonstrated that the achieved shear strength parameters are significantly affected by the variables tested during the triaxial experiments and physical parameters of a given soil sample, but also by the loading increment rate during the tests. It is extremely important to adjust the rate of loading during a test according to the preliminary characterization of a tested ground sample so as to have some control over the obtained ground strength parameters. The neuro-fuzzy model has been constructed based on a set of values obtained after a series of experimental tests, including values of ground shear strength parameters. The database used for the neuro-fuzzy modelling consisted of 6 different ground parameters for each of the 12 shear stress rates applied during the triaxial tests. The learnability was verified on a database composed of the test results – a neuro-fuzzy model was built from learning sets and its accuracy was verified by sets of tests to which the model was applied for the first time. The results obtained from the ANFIS model did not diverge substantially from the ones obtained directly by performing the physical tests. The ANFIS proved to be highly universal and easy to operate. It accounted for the multi-faceted nature of interrelationships between ground parameters.
Źródło:
Budownictwo i Architektura; 2014, 13, 2; 7-15
1899-0665
Pojawia się w:
Budownictwo i Architektura
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of lightning density value tower based on Adaptive Neuro-fuzzy Inference System
Autorzy:
Said, Sri Mawar
Nappu, Muhammad Bachtiar
Asri, Andarini
Utomo, Bayu Tri
Powiązania:
https://bibliotekanauki.pl/articles/1841146.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
adaptive neuro-fuzzy inference system
lightning density prediction tower
Transmission Line Arrester
adaptacyjny system wnioskowania neurorozmytego
wieża prognozowania gęstości piorunów
ogranicznik linii transmisyjnej
Opis:
Lightning is one of the causes of transmission disorders and natural phenomena that cannot be avoided. The South Sulawesi region is located close to the equator and has a high lightning density. This condition results in lightning susceptibility of distur- bances to electrical system lines, especially in high-voltage airlines and substations. An Adaptive Neuro-Fuzzy Inference System (ANFIS) will show the Root Mean Square Error (RMSE) based on the membership function type. This journal is to predict the value of the transmission tower lightning density using the ANFIS method. The value of the lightning strike density index can later be determined based on ANFIS predictions. Analysis of the value calculation system of structural lightning strikes in the South Sulawesi region of the Sungguminasa-Tallasa route can be categorized as three characteristics lightning density (Nd). The calculation system results for the value of structural lightning struck in the South Sulawesi region and validated between manual calculations and ANFIS with an average percentage of 0.0554%.
Źródło:
Archives of Electrical Engineering; 2021, 70, 3; 499-511
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent Retail Forecasting System for New Clothing Products Considering Stock-out
Inteligentny system przewidywania sprzedaży detalicznej nowych produktów odzieżowych uwzględniający wyprzedaż
Autorzy:
Huang, H.
Liu, Q.
Powiązania:
https://bibliotekanauki.pl/articles/232823.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
intelligent forecasting system
demand estimation
stock out
adaptive neuro fuzzy inference system
new clothing product
inteligentny system prognozowania
prognozowanie popytu
system adaptacyjno neuronowy
dane rozproszone
selekcja danych
Opis:
Improving the accuracy of forecasting is crucial but complex in the clothing industry, especially for new products, with the lack of historical data and a wide range of factors affecting demand. Previous studies more concentrate on sales forecasting rather than demand forecasting, and the variables affecting demand remained to be optimized. In this study, a two-stage intelligent retail forecasting system is designed for new clothing products. In the first stage, demand is estimated with original sales data considering stock-out. The adaptive neuro fuzzy inference system (ANFIS) is introduced into the second stage to forecast demand. Meanwhile a data selection process is presented due to the limited data of new products. The empirical data are from a Canadian fast-fashion company. The results reveal the relationship between demand and sales, demonstrate the necessity of integrating the demand estimation process into a forecasting system, and show that the ANFIS-based forecasting system outperforms the traditional ANN technique.
Poprawa dokładności prognozowania jest bardzo istotna, ale skomplikowana w przypadku przemysłu odzieżowego, zwłaszcza dla nowych produktów oraz szerokiego zakresu czynników wpływających na popyt. Wcześniejsze badania bardziej koncentrowały się na prognozowaniu sprzedaży, niż prognozowaniu popytu. Zmienne wpływające na popyt powinny zostać zoptymalizowane. W tym badaniu opracowano dwustopniowy inteligentny system prognozowania sprzedaży detalicznej przeznaczony dla nowych produktów odzieżowych. W pierwszym etapie, popyt jest określony za pośrednictwem oryginalnych danych dotyczących sprzedaży. Adaptacyjny neuronowy system danych rozproszonych (ANFIS) jest wprowadzony w drugim etapie do prognozowania popytu. Jednocześnie prezentowany jest proces selekcji danych. Dane empiryczne pochodzą z kanadyjskiej firmy.
Źródło:
Fibres & Textiles in Eastern Europe; 2017, 1 (121); 10-16
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of backbreak in open pit blasting by Adaptive Neuro-Fuzzy Inference System
Prognozowanie spękań skał przy pracach strzałowych w kopalniach odkrywkowych przy użyciu metod neuronowych i wnioskowania rozmytego (ANFIS) zastosowanych w modelu adaptywnym
Autorzy:
Bazzazi, A. A.
Esmaeili, M.
Powiązania:
https://bibliotekanauki.pl/articles/219044.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
prace strzałowe
pękanie skał
system wnioskowania wykorzystujący elementy sieci neuronowych i logiki rozmytej
kopalnia rud żelaza Sangan
blasting
backbreak
adaptive neuro-fuzzy inference system
Sangan iron mine
Opis:
Adaptive neuro-fuzzy inference system (ANFIS) is powerful model in solving complex problems. Since ANFIS has the potential of solving nonlinear problem and can easily achieve the input-output mapping, it is perfect to be used for solving the predicting problem. Backbreak is one of the undesirable effects of blasting operations causing instability in mine walls, falling down the machinery, improper fragmentation and reduction in efficiency of drilling. In this paper, ANFIS was applied to predict backbreak in Sangan iron mine of Iran. The performance of the model was assessed through the root mean squared error (RMSE), the variance account for (VAF) and the correlation coefficient (R2) computed from the measured of backbreak and model-predicted values of the dependent variables. The RMSE, VAF, R2 indices were calculated 0.6, 0.94 and 0.95 for ANFIS model. As results, these indices revealed that the ANFIS model has very good prediction performance.
Adaptywny system wnioskowania wykorzystujący elementy sieci neuronowych i logiki rozmytej (ANFIS) stanowi potężny narzędzie do rozwiązywania złożonych problemów. Ponieważ model ANFIS może być wykorzystywany do rozwiązywania problemów nieliniowych i umożliwia wygodne przedstawienie problemu w formie: wejście - wyjście, jest idealnym narzędziem do rozwiązywania problemów związanych z prognozowaniem. Pękanie skał w odkrywce jest jednym z niekorzystnych skutków prowadzenia prac strzałowych, powoduje niestabilność ścian, uszkodzenia maszyn i urządzeń, nieodpowiednią fragmentację skał oraz prowadzi do obniżenia efektywności wierceń. W pracy przedstawiono zastosowanie systemu ANFIS do prognozowania pękań skał w kopalni rud żelaza w Sangan (Iran). Działanie modelu zbadano na podstawie wartości błędu średniokwadratowego (RMSE), wariancji (VAF) i współczynnika korelacji (R2) obliczonego na podstawie pomiarów pęknięć skał i wartości uzyskanych z modelowania. Wartości wskaźników RMSE, VAF i R2 obliczonych przy użyciu modelu ANFIS wynoszą odpowiednio 0.6, 0.94 i 0.95. Wielkości te wyraźnie potwierdzają wysoką skuteczność modelu.
Źródło:
Archives of Mining Sciences; 2012, 57, 4; 933-943
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A class of neuro-computational methods for assamese fricative classification
Autorzy:
Patgiri, C.
Sarma, M.
Sarma, K. K.
Powiązania:
https://bibliotekanauki.pl/articles/91763.pdf
Data publikacji:
2015
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
neuro-computational classifier
fricative phonemes
Assamese language
Recurrent Neural Network
RNN
neuro fuzzy classifier
linear prediction cepstral coefficients
LPCC
self-organizing map
SOM
adaptive neuro-fuzzy inference system
ANFIS
klasyfikator neuronowy
klasyfikator neuronowo rozmyty
sieć Kohonena
Opis:
In this work, a class of neuro-computational classifiers are used for classification of fricative phonemes of Assamese language. Initially, a Recurrent Neural Network (RNN) based classifier is used for classification. Later, another neuro fuzzy classifier is used for classification. We have used two different feature sets for the work, one using the specific acoustic-phonetic characteristics and another temporal attributes using linear prediction cepstral coefficients (LPCC) and a Self Organizing Map (SOM). Here, we present the experimental details and performance difference obtained by replacing the RNN based classifier with an adaptive neuro fuzzy inference system (ANFIS) based block for both the feature sets to recognize Assamese fricative sounds.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2015, 5, 1; 59-70
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimation of discharge correction factor of modified Parshall flume using ANFIS and ANN
Autorzy:
Saran, D.
Tiwari, N. K.
Powiązania:
https://bibliotekanauki.pl/articles/1818494.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
Discharge Correction Factor
Adaptive Neuro-Fuzzy Inference System
artificial neural network
Multiple Non-linear Regression
parshall flumes
współczynnik korygujący wyładowania
adaptacyjny system neuronowo-rozmyty
sztuczna sieć neuronowa
regresja wielokrotna nieliniowa
Opis:
Purpose: To evaluate and compare the capability of ANFIS (Adaptive Neuro-Fuzzy-Inference System), ANN (Artificial Neural Network), and MNLR (Multiple Non-linear Regression) techniques in the estimation and formulation of Discharge Correction Factor (Cd) of modified Parshall flumes as based on linear relations and errors between input and output data. Design/methodology/approach: Acknowledging the necessity of further research in this field, experiments were conducted in the Hydraulics Laboratory of Civil Engineering Department, National Institute of Technology, Kurukshetra, India. The Parshall flume characteristics, associated longitudinal slopes and the discharge passing through the flume were varied. Consequent water depths at specific points in Parshall flumes were noted and the values of Cd were computed. In this manner, a data set of 128 observations was acquired. This was bifurcated arbitrarily into a training dataset consisting of 88 observations and a testing dataset consisting of 40 observations. Models developed using the training dataset were checked on the testing dataset for comparison of the performance of each predictive model. Further, an empirical relationship was formulated establishing Cd as a function of flume characteristics, longitudinal slope, and water depth at specific points using the MNLR technique. Moreover, Cd was estimated using soft computing tools; ANFIS and ANN. Finally, a sensitivity analysis was done to find out the flume variable having the greatest influence on the estimation of Cd. Findings: The predictive accuracy of the ANN-based model was found to be better than the model developed using ANFIS, followed by the model developed using the MNLR technique. Further, sensitivity analysis results indicated that primary depth reading (Ha) as input parameter has the greatest influence on the prediction capability of the developed model. Research limitations/implications: Since the soft computing models are data based learning, hence the prediction capability of these models may dwindle if data is selected beyond the current data range, which is based on the experiments conducted under specific conditions. Further, since the present study has faced time and facility constraints, hence there is still a huge scope of research in this field. Different lateral slopes, combined lateral- longitudinal slopes, and more modified Parshall flume models of larger sizes can be added to increase the versatility of the current research. Practical implications: Cd of modified Parshall flumes can be predicted using the ANN- based prediction model more accurately as compared to other considered techniques. Originality/value: The comparative analysis of prediction models, as well as the formulation of relation, has been conducted in this study. In all the previous works, little to no soft computing techniques have been applied for the analysis of Parshall flumes. Even the regression techniques have been applied only on Parshall flumes of standard sizes. However, this paper includes not only Parshall flume of standard size but also a modified Parshall flume in its pursuit of predicting Cd with the help of ANN and ANFIS based prediction models along with MNLR technique.
Źródło:
Archives of Materials Science and Engineering; 2020, 105, 1; 17--30
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Implication-Based Neuro-Fuzzy Architectures
Autorzy:
Rutkowska, D.
Nowicki, R.
Powiązania:
https://bibliotekanauki.pl/articles/911144.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system rozmyty
implikacja rozmyta
wnioskowanie rozmyte
neuro-fuzzy systems
fuzzy implications
fuzzy inference
Mamdani approach
logical approach
connectionist architectures
Opis:
This paper presents connectionist multi-layer architectures of neuro-fuzzy systems based on various fuzzy implications. The well-known Mamdani approach (constructive) and the logical approach (destructive) are considered. Two kinds of architectures, a simpler and a more general one, are distinguished. Examples of application to classification and control problems are provided.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2000, 10, 4; 675-701
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid model for modelling the salinity of the Tafna River in Algeria
Hybrydowy model służący modelowaniu zasolenia rzeki Tafna w Algierii
Autorzy:
Houari, Khemissi
Hartani, Tarik
Remini, Boualem
Lefkir, Abdelouhab
Abda, Leila
Heddam, Salim
Powiązania:
https://bibliotekanauki.pl/articles/292367.pdf
Data publikacji:
2019
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
Adaptive-Network-Based Fuzzy Inference System (ANFIS)
hybrid model
neuro-fuzzy
salinity
salt flow
Tafna River
model hybrydowy
przepływ soli
rzeka Tafna
system neuronowo-rozmyty
system wnioskowania rozmytego (ANFIS)
zasolenie
Opis:
In this paper, the capacity of an Adaptive-Network-Based Fuzzy Inference System (ANFIS) for predicting salinity of the Tafna River is investigated. Time series data of daily liquid flow and saline concentrations from the gauging station of Pierre du Chat (160801) were used for training, validation and testing the hybrid model. Different methods were used to test the accuracy of our results, i.e. coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (E), root of the mean squared error (RSR) and graphic techniques. The model produced satisfactory results and showed a very good agreement between the predicted and observed data, with R2 equal (88% for training, 78.01% validation and 80.00% for testing), E equal (85.84% for training, 82.51% validation and 78.17% for testing), and RSR equal (2% for training, 10% validation and 49% for testing).
W pracy badano zdolność systemu wnioskowania rozmytego opartego na adaptacyjnej sieci (ANFIS) do przewidywania zasolenia rzeki Tafna. Do trenowania, oceny i testowania modelu hybrydowego wykorzystano serie pomiarów dobowych przepływów płynu i stężeń soli ze stacji pomiarowej w Pierre du Chat (160801). Dokładność wyników testowano za pomocą: współczynnika determinacji (R2), współczynnika wydajności Nasha–Sutcliffe’a (E), pierwiastka średniego błędu kwadratowego (RSR) i technik graficznych. Model dał zadowalające wyniki i wykazywał dobrą zgodność między danymi obserwowanymi a przewidywanymi: R2 (88% w przypadku uczenia sieci, 78.01% walidacji i 80.00% testowania), E (85.84% w przypadku uczenia sieci, 82.51% walidacji i 78.17% testowania) i RSR (2% w przypadku uczenia sieci, 10% walidacji i 49% testowania).
Źródło:
Journal of Water and Land Development; 2019, 40; 127-135
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-11 z 11

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies