Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neuro-fuzzy" wg kryterium: Temat


Tytuł:
A class of neuro-computational methods for assamese fricative classification
Autorzy:
Patgiri, C.
Sarma, M.
Sarma, K. K.
Powiązania:
https://bibliotekanauki.pl/articles/91763.pdf
Data publikacji:
2015
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
neuro-computational classifier
fricative phonemes
Assamese language
Recurrent Neural Network
RNN
neuro fuzzy classifier
linear prediction cepstral coefficients
LPCC
self-organizing map
SOM
adaptive neuro-fuzzy inference system
ANFIS
klasyfikator neuronowy
klasyfikator neuronowo rozmyty
sieć Kohonena
Opis:
In this work, a class of neuro-computational classifiers are used for classification of fricative phonemes of Assamese language. Initially, a Recurrent Neural Network (RNN) based classifier is used for classification. Later, another neuro fuzzy classifier is used for classification. We have used two different feature sets for the work, one using the specific acoustic-phonetic characteristics and another temporal attributes using linear prediction cepstral coefficients (LPCC) and a Self Organizing Map (SOM). Here, we present the experimental details and performance difference obtained by replacing the RNN based classifier with an adaptive neuro fuzzy inference system (ANFIS) based block for both the feature sets to recognize Assamese fricative sounds.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2015, 5, 1; 59-70
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid cascade neuro-fuzzy network with pools of extended neo-fuzzy neurons and its deep learning
Autorzy:
Bodyanskiy, Yevgeniy V.
Tyshchenko, Oleksii K.
Powiązania:
https://bibliotekanauki.pl/articles/330840.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
data stream
membership function
training procedure
adaptive neuro-fuzzy system
extended neo-fuzzy neuron
strumień danych
funkcja przynależności
neuronowo rozmyty układ adaptacyjny
Opis:
This research contribution instantiates a framework of a hybrid cascade neural network based on the application of a specific sort of neo-fuzzy elements and a new peculiar adaptive training rule. The main trait of the offered system is its competence to continue intensifying its cascades until the required accuracy is gained. A distinctive rapid training procedure is also covered for this case that offers the possibility to operate with non-stationary data streams in an attempt to provide online training of multiple parametric variables. A new training criterion is examined for handling non-stationary objects. Additionally, there is always an occasion to set up (increase) the inference order and the number of membership relations inside the extended neo-fuzzy neuron.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 3; 477-488
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid model for modelling the salinity of the Tafna River in Algeria
Hybrydowy model służący modelowaniu zasolenia rzeki Tafna w Algierii
Autorzy:
Houari, Khemissi
Hartani, Tarik
Remini, Boualem
Lefkir, Abdelouhab
Abda, Leila
Heddam, Salim
Powiązania:
https://bibliotekanauki.pl/articles/292367.pdf
Data publikacji:
2019
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
Adaptive-Network-Based Fuzzy Inference System (ANFIS)
hybrid model
neuro-fuzzy
salinity
salt flow
Tafna River
model hybrydowy
przepływ soli
rzeka Tafna
system neuronowo-rozmyty
system wnioskowania rozmytego (ANFIS)
zasolenie
Opis:
In this paper, the capacity of an Adaptive-Network-Based Fuzzy Inference System (ANFIS) for predicting salinity of the Tafna River is investigated. Time series data of daily liquid flow and saline concentrations from the gauging station of Pierre du Chat (160801) were used for training, validation and testing the hybrid model. Different methods were used to test the accuracy of our results, i.e. coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (E), root of the mean squared error (RSR) and graphic techniques. The model produced satisfactory results and showed a very good agreement between the predicted and observed data, with R2 equal (88% for training, 78.01% validation and 80.00% for testing), E equal (85.84% for training, 82.51% validation and 78.17% for testing), and RSR equal (2% for training, 10% validation and 49% for testing).
W pracy badano zdolność systemu wnioskowania rozmytego opartego na adaptacyjnej sieci (ANFIS) do przewidywania zasolenia rzeki Tafna. Do trenowania, oceny i testowania modelu hybrydowego wykorzystano serie pomiarów dobowych przepływów płynu i stężeń soli ze stacji pomiarowej w Pierre du Chat (160801). Dokładność wyników testowano za pomocą: współczynnika determinacji (R2), współczynnika wydajności Nasha–Sutcliffe’a (E), pierwiastka średniego błędu kwadratowego (RSR) i technik graficznych. Model dał zadowalające wyniki i wykazywał dobrą zgodność między danymi obserwowanymi a przewidywanymi: R2 (88% w przypadku uczenia sieci, 78.01% walidacji i 80.00% testowania), E (85.84% w przypadku uczenia sieci, 82.51% walidacji i 78.17% testowania) i RSR (2% w przypadku uczenia sieci, 10% walidacji i 49% testowania).
Źródło:
Journal of Water and Land Development; 2019, 40; 127-135
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Neuro-Adaptive Learning (NAL) Approach about Costs of Residential Buildings
Autorzy:
Ugur, L.
Powiązania:
https://bibliotekanauki.pl/articles/1031585.pdf
Data publikacji:
2017-09
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
costs of residential buildings
neuro-adaptive learning
fuzzy logic
Opis:
The artificial neural networks and fuzzy logic models are two well-known branches of artificial intelligence and have been broadly and successfully used to simulate input-output systems. Over the last two decades, a different modeling method based on fuzzy logic or neural networks has become popular and has been used by many researchers for a variety of engineering applications. Nowadays, for reducing the amount of experiment costs, modeling methods based on artificial neural networks and fuzzy logic systems have become more popular and have been used by many researchers for many civil engineering management applications. In this study a neuro-adaptive learning approach about costs of residential buildings was designed. As a result, NAL can be an alternative approach for the evaluation of the cost estimations of residential buildings construction.
Źródło:
Acta Physica Polonica A; 2017, 132, 3; 585-587
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A neuro-fuzzy controller with a compromise fuzzy reasoning
Autorzy:
Rutkowski, L.
Cpałka, K.
Powiązania:
https://bibliotekanauki.pl/articles/205949.pdf
Data publikacji:
2002
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
metoda logiczna
metoda Mamdaniego
sterownik neuronowo-rozmyty
logical approach
Mamdani approach
neuro-fuzzy controler
Opis:
This paper presents a compromise approach to neuro-fuzzy controllers. It includes both Mamdani (constructive) and logical (destructive) fuzzy inference. New neuro-fuzzy controllers are derived and simulation results are presented.
Źródło:
Control and Cybernetics; 2002, 31, 2; 297-308
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Neuro-Fuzzy System Based on Logical Interpretation of If-then Rules
Autorzy:
Łęski, J.
Henzel, N.
Powiązania:
https://bibliotekanauki.pl/articles/911145.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system rozmyty
implikacja rozmyta
fuzzy implications
approximate reasoning
neuro-fuzzy systems
soft computing
Opis:
Several important fuzzy implications and their properties are described on the basis of an axiomatic approach to the definition of the fuzzy implications. Then the idea of approximate reasoning using the generalized modus ponens and fuzzy implications is considered. The elimination of the non-informative part of the final fuzzy set before defuzzification plays the key role in this paper. After reviewing well-known fuzzy systems, a new artificial neural network based on logical interpretation of if-then rules (ANBLIR) is introduced. Moreover, this system automatically generates rules from numerical data. Applications of ANBLIR to pattern recognition on numerical examples using benchmark databases are indicated.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2000, 10, 4; 703-722
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new intelligentapproach in predictive maintenance of separation system
Autorzy:
Marichal, G. N.
Ávila, D.
Hernández, A.
Padrón, I.
Powiązania:
https://bibliotekanauki.pl/articles/116306.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
marine fuel separators
separation system
predictive maintenance
greenhouse gas (GHG)
Fast Fourier Transformation (FFT)
genetic neuro-fuzzy system
genetic algorithm
supervised learning
Opis:
Reducing contaminant emissions is an important task of any industry, included the maritime one. In fact, in April 2018, IMO (International Maritime Organization) adopted an Initial Strategy on reduction of Greenhouse gas (GHG) emissions from ships. An essential part responsible for producing these emissions is the diesel engine. For that reason vessels include separation systems for heavy fuel oils. The purpose of this work is to improve the predictive maintenance techniques incorporating new intelligent approaches. An analysis of vibrations of this separation system was made and their characteristics were used in a Genetic Neuro-Fuzzy System in order to design an intelligent maintenance based on condition monitoring. The achieved results show that the proposed method provides an improvement since it indicates if a maintenance operation is necessary before the schedule one or if it could be possible extend the next maintenance service.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2020, 14, 2; 385-390
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adaptive control of cluster-based Web systems using neuro-fuzzy models
Autorzy:
Zatwarnicki, K.
Powiązania:
https://bibliotekanauki.pl/articles/331413.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
model rozmyto neuronowy
dystrybucja żądań
klaster serwerów
QoWS
neuro fuzzy model
request distribution
web cluster
Opis:
A significant development of Web technologies requires the application of more and more complex systems and algorithms for maintaining high quality of Web services. Presently, not only simple decision-making tools but also complex adaptation algorithms using artificial intelligence techniques are applied for controlling HTTP request traffic. The paper presents a new LFNRD (Local Fuzzy-Neural Adaptive Request Distribution) algorithm for request distribution in cluster-based Web systems using neuro-fuzzy models of Web servers in the decision-making process. The neuro-fuzzy model which is applied is discussed in detail and a design of the Web switch using the proposed solution is presented. Finally, a testbed is described and the results of a comparative simulation study on the LFNRD algorithm, and other algorithms known from the literature and used in the industry, are presented and discussed.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 2; 365-377
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analytical Study for the Role of Fuzzy Logic in Improving Metaheuristic Optimization Algorithms
Autorzy:
Vij, Sonakshi
Jain, Amita
Tayal, Devendra
Castillo, Oscar
Powiązania:
https://bibliotekanauki.pl/articles/385121.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
fuzzy logic
metaheuristics
evolutionary computing
genetic algorithm
particle swarm optimization (PSO)
ant colony optimization
fuzzy evolutionary algorithm
fuzzy cuckoo
fuzzy simulated annealing
fuzzy swarm intelligence
fuzzy differential evolution
tabu
fuzzy mutation
fuzzy natural selection
fuzzy fitness function
big bang big crunch
fuzzy bacterial
neuro fuzzy logic
logika rozmyta
metaheurystyka
obliczenia ewolucyjne
algorytm genetyczny
optymalizacja roju cząstek
optymalizacja kolonii mrówek
Opis:
The research applications of fuzzy logic have always been multidisciplinary in nature due to its ability in handling vagueness and imprecision. This paper presents an analytical study in the role of fuzzy logic in the area of metaheuristics using Web of Science (WoS) as the data source. In this case, 178 research papers are extracted from it in the time span of 1989-2016. This paper analyzes various aspects of a research publication in a scientometric manner. The top cited research papers, country wise contribution, topmost organizations, top research areas, top source titles, control terms and WoS categories are analyzed. Also, the top 3 fuzzy evolutionary algorithms are extracted and their top research papers are mentioned along with their topmost research domain. Since neuro fuzzy logic poses feasible options for solving numerous research problems, hence a section is also included by the authors to present an analytical study regarding research in it. Overall, this study helps in evaluating the recent research patterns in the field of fuzzy metaheuristics along with envisioning the future trends for the same. While on one hand this helps in providing a new path to the researchers who are beginners in this field as they can start exploring it through the analysis mentioned here, on the other hand it provides an insight to professional researchers too who can dig a little deeper in this field using knowledge from this study.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2018, 12, 4; 11-27
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An outlier-robust neuro-fuzzy system for classification and regression
Autorzy:
Siminski, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/1838201.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
outliers
neuro-fuzzy system
clustering algorithm
regression
wyjątki
system neurorozmyty
algorytm grupowania
Opis:
Real life data often suffer from non-informative objects—outliers. These are objects that are not typical in a dataset and can significantly decline the efficacy of fuzzy models. In the paper we analyse neuro-fuzzy systems robust to outliers in classification and regression tasks. We use the fuzzy c-ordered means (FCOM) clustering algorithm for scatter domain partition to identify premises of fuzzy rules. The clustering algorithm elaborates typicality of each object. Data items with low typicalities are removed from further analysis. The paper is accompanied by experiments that show the efficacy of our modified neuro-fuzzy system to identify fuzzy models robust to high ratios of outliers.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 2; 303-319
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analog Circuit Based on Computational Intelligence Techniques
Autorzy:
Oltean, G.
Hintea, S.
Şipos, E.
Powiązania:
https://bibliotekanauki.pl/articles/385049.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
analog circuit design
optimization
genetic algorithm
neuro-fuzzy systems
Opis:
This paper presents a new method for analog circuit design optimization. Our approach turns to good account the advantages offered by computational intelligence techniques. Design objectives can be expressed in a flexible manner using fuzzy sets. This way appears the possibility to consider different degrees for requirement achievements and acceptability degree for a particular solution. Neuro-fuzzy systems (universal approximators) are used to model the complex multi-variable and nonlinear circuit performances. These models satisfy two main requirements: high accuracy and low computation complexity. An efficient and robust genetic algorithm does avoiding local minima the exploration of the large, multidimensional solution space in quest for the optimal solution.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2009, 3, 2; 63-69
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of adaptive neuro-fuzzy PD controller with competitive Petri layers in speed control system for DC motor
Autorzy:
Derugo, P.
Szabat, K.
Powiązania:
https://bibliotekanauki.pl/articles/97666.pdf
Data publikacji:
2013
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
adaptive neuro-fuzzy controller
Peri Layers
competitive layers
MRAS
Opis:
In the paper the issues related to the application of adaptive neuro-fuzzy controller for speed controller of an electrical motor are considered. Adaptive control structure with reference model (MRAS) is used. The standard controller is modified by the implementation of competitive Petri layers into its internal structure. The proposed modification improves the properties of the drive compared to the control structure with standard neuro-fuzzy controller. Theoretical considerations are confirmed by simulation studies experimental tests done on the laboratory stand.
Źródło:
Computer Applications in Electrical Engineering; 2013, 11; 267-280
1508-4248
Pojawia się w:
Computer Applications in Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of new method of initialisation of neuro - fuzzy systems with support vector machines
Analiza nowej metody inicjalizacji systemów neuronowo – rozmytych z wykorzystaniem maszyn wektorów wspierających
Autorzy:
Simiński, K.
Powiązania:
https://bibliotekanauki.pl/articles/375675.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
support vector machine (SVM)
neuro-fuzzy systems
classification
regression
Opis:
The correspondence between support vector machines and neuro-fuzzy systems is very interesting. The full equivalence for classification and partial for regression has been formally shown. The equivalence has very interesting implication. It is a base for a new method of initialization of neurofuzzy systems, ie. for creating of fuzzy rule base. The commonly used methods are based on reversion of item: the premises of fuzzy rules split input domain into region, thus premises of fuzzy rules can be elaborated by partition of input domain. This leads to three main classes of partition of input domain. The above mentioned equivalence results in new way of creating the rule base. Now the input domain is not partitioned, but the premises of fuzzy rules are extracted from support vector. The objective of the paper is to examine the advantages and disadvantages of this new method for creation of fuzzy rule bases for neuro-fuzzy systems.
Związek pomiedzy maszynami wektorów podpierajacych i systemami neuronoworozmytymi jest bardzo interesujący. Została wykazana pełna odpowiedniość między tymi systemami dla klasyfikacji i częściowa dla regresji. Odpowiedność ta ma bardzo ważną konsekwencję. Jest podstawa do opracowania nowego sposobu tworzenia bazy reguł dla systemu neuronowo-rozmytego. Dotychczasowe metody opieraja się na podziale przestrzeni wejściowej, a następnie przekształcenia tak powstałych regionów w przesłanki rozmytych reguł. Tutaj możliwe jest przekształcanie wektorów wspierających na przesłanki reguł rozmytych. Celem artykułu jest przebadanie możliwości stosowania takiego podejścia do inicjalizacji systemów neuronowo-rozmytych. Eksperymenty wykazują dosć istotną wadę tego podejścia. W jego wyniku powstają bardzo liczne zbiory reguł rozmytych, co zupełnie przeczy idei interpretowalności wiedzy w systemach neuronowo-rozmytych. Manipulacja pewnymi parametrami umożliwia zmiejszenie liczby reguł, jednak manipulacja ta jest trudna i wymaga wielu prób. Drugą dość istotna wadą jest wyraźnie wyższy błąd wypracowywany przez systemy inicjalizowane przez SVM w porównaniu do systemów, których bazy reguł tworzone sa˛ poprzez podział przestrzeni wejściowej.
Źródło:
Theoretical and Applied Informatics; 2012, 24, 3; 243-254
1896-5334
Pojawia się w:
Theoretical and Applied Informatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of some problems of experimental mechanics and biomechanics by means the anfis neuro-fuzzy system
Autorzy:
Waszczyszyn, Z.
Słoński, M.
Powiązania:
https://bibliotekanauki.pl/articles/279788.pdf
Data publikacji:
2000
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
neuro-fuzzy system
vibration of buldings
proximal femurs
fracture toughness
experimental mechanics
Opis:
The Adaptive Neuro-Fuzzy Inference System (ANFIS) has been applied to the analysis of three problems: prediction of fundamental periods of vibrations of 5-storey prefabricated buildings, estimation of proximal femur strength, estimation of fracture toughness of dense concret. The results obtained by means of ANFIS are compared with those empirical formulae and forward neural networks. The ANFIS results have been proven to be superior.
Analiza wybranych zagadnień doświadczalnej mechaniki i biomechaniki za pomocą neuro-rozmytego systemu ANFIS. Adaptacyjny neuro-rozmyty system ANFIS został zastosowany do analizy trzech problemów: określenie podstawowych okresów drgań 5-piętrowych budynków prefabrykowanych, określenie wytrzymałości górnej części kości udowych oraz oszacowanie odporności na zniszczenie betonów ciężkich. Wyniki otrzymane za pomocą systemu ANFIS porównano z wynikami, jakie dają wzory empiryczne i jednokierunkowe sieci neuronowe. Wykazano, że najlepszą dokładność daje system ANFIS.
Źródło:
Journal of Theoretical and Applied Mechanics; 2000, 38, 2; 429-445
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of competitive and transition petri layers in adaptive neuro-fuzzy controller
Autorzy:
Derugo, P.
Powiązania:
https://bibliotekanauki.pl/articles/1193155.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
Petri layer
neuro-fuzzy
MRAS
competitive layer
transition layer
Opis:
The article is a summary of previous work on the possibility of using Petri layers in adaptive neuro-fuzzy controllers. In the first part of the paper the controller and two types of Petri layer have been presented, competitive layer which resets certain signals and transition layer which causes omission of signals. Layer properties were described and comparison has been made. In the second part of the paper, the results of a simulation showing the advantages and disadvantages of proposed solutions have been presented. Both quality of reference signal tracking and energetic cost of control process have been calculated. In the last part, analysis and comments on the results were made. Main conclusions are that transition Petri layer can significantly reduce growth of numerical cost of the algorithm despite the increase of fuzzy rules count. Also both competitive Petri layer and transition Petri layer by changing some inner signals can affect output value of the fuzzy system and thus the control quality indicators change. Most positive solutions have been pointed out
Źródło:
Power Electronics and Drives; 2016, 1, 36/1; 103-115
2451-0262
2543-4292
Pojawia się w:
Power Electronics and Drives
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies