Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural image analysis" wg kryterium: Temat


Tytuł:
A CNN based Hybrid approach towards automatic image registration
Hybrydowe podejście do automatycznej rejestracji obrazu z wykorzystaniem komórkowych sieci neuronowych
Autorzy:
Arun, P. V.
Katiyar, S. K.
Powiązania:
https://bibliotekanauki.pl/articles/145296.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
teledetekcja
metody resamplingu
sieć neuronowa komórkowa
analiza obrazu
rejestracja obrazu
cellular neural network (CNN)
image analysis
image registration
resampling
remote sensing
Opis:
Image registration is a key component of various image processing operations which involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however inability to properly model object shape as well as contextual information had limited the attainable accuracy. In this paper, we propose a framework for accurate feature shape modeling and adaptive resampling using advanced techniques such as Vector Machines, Cellular Neural Network (CNN), SIFT, coreset, and Cellular Automata. CNN has found to be effective in improving feature matching as well as resampling stages of registration and complexity of the approach has been considerably reduced using corset optimization The salient features of this work are cellular neural network approach based SIFT feature point optimisation, adaptive resampling and intelligent object modelling. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the approach. System has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. Methodology also illustrated to be effective in providing intelligent interpretation and adaptive resampling.
Rejestracja obrazu jest kluczowym składnikiem różnych operacji jego przetwarzania. W ostatnich latach do automatycznej rejestracji obrazu wykorzystuje się metody sztucznej inteligencji, których największą wadą, obniżającą dokładność uzyskanych wyników jest brak możliwości dobrego wymodelowania kształtu i informacji kontekstowych. W niniejszej pracy zaproponowano zasady dokładnego modelowania kształtu oraz adaptacyjnego resamplingu z wykorzystaniem zaawansowanych technik, takich jak Vector Machines (VM), komórkowa sieć neuronowa (CNN), przesiewanie (SIFT), Coreset i automaty komórkowe. Stwierdzono, że za pomocą CNN można skutecznie poprawiać dopasowanie obiektów obrazowych oraz resampling kolejnych kroków rejestracji, zaś zastosowanie optymalizacji metodą Coreset znacznie redukuje złożoność podejścia. Zasadniczym przedmiotem pracy są: optymalizacja punktów metodą SIFT oparta na podejściu CNN, adaptacyjny resampling oraz inteligentne modelowanie obiektów. Opracowana metoda została porównana ze współcześnie stosowanymi metodami wykorzystującymi różne miary statystyczne. Badania nad różnymi obrazami satelitarnymi wykazały, że stosując opracowane podejście osiągnięto bardzo dobre wyniki. System stosując podejście CNN-prolog dynamicznie wykorzystuje informacje spektralne i przestrzenne dla reprezentacji wiedzy kontekstowej. Metoda okazała się również skuteczna w dostarczaniu inteligentnych interpretacji i w adaptacyjnym resamplingu.
Źródło:
Geodesy and Cartography; 2013, 62, 1; 33-49
2080-6736
2300-2581
Pojawia się w:
Geodesy and Cartography
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural image analysis in process of compost quality identification
Neuronowa analiza obrazu w procesie identyfikacji jakości kompostu
Autorzy:
Boniecki, P.
Dach, J.
Jakubek, A.
Dejewska, T.
Powiązania:
https://bibliotekanauki.pl/articles/334309.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
neuronowa analiza obrazu
identyfikacja
kompost
neural image analysis
compost
identification
Opis:
The paper presents the experiments of compost images analysis carried out with two types of digital cameras working in daylight and ultraviolet light. The data collected with two cameras were analysed with the usage of neural network model (using part of application Statistica v. 8.0). The results of images analysis were combined also with the results of chemical and physical analysis of composted material.
W pracy zaproponowano oryginalną metodę oceny jakości kompostu, z wykorzystaniem nowoczesnych technik analizy obrazu, dokonaną w oparciu o zdjęcia pozyskane z dwóch typów aparatów cyfrowych, pracujących w świetle dziennym oraz świetle ultrafioletowym. Zebrane dane poddane zostały analizie za pomocą sztucznych sieci neuronowych z wykorzystaniem numerycznego symulatora SNN zaimplementowanego w postaci modułu w komercyjnym pakiecie Statistica v. 8.0. Otrzymane wyniki zostały następnie skojarzone z danymi uzyskanymi w oparciu o przeprowadzoną analizę chemiczną oraz fizyczną wybranych materiałów organicznych, poddanych procesowi kompostowania w warunkach laboratoryjnych.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2009, 54, 1; 9-11
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System informatyczny "nStraw" wspomagający neuronową identyfikację stopnia dojrzałości kompostu
Computer system "nStraw" assisting a neural identification of compost maturity
Autorzy:
Boniecki, P.
Jakubek, A.
Kuzimska, T.
Pilarski, K.
Powiązania:
https://bibliotekanauki.pl/articles/336465.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
kompost
dojrzałość
analiza obrazu
sztuczna inteligencja
sieci neuronowe
compost
maturity
image analysis
artificial intelligence
neural networks
Opis:
Celem pracy była neuronowa identyfikacja stopnia rozkładu materiału organicznego (słomy) na podstawie informacji graficznej, uzyskanej przy użyciu metod analizy obrazu. W tym celu opracowano oryginalny system informatyczny "nStraw", umożliwiający edycję obrazów cyfrowych, akwizycję danych graficznych, ich analizę oraz konwersję do zbiorów uczących w postaci akceptowalnej przez symulator sztucznych sieci neuronowych.
The aim of this study was to describe a neural identification of the level of decomposition of organic material, based on graphic information, which is obtained by using image analysis. For this purpose, a neural network "nStraw" was generated for editing images, data retrieval and analysis.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2012, 57, 1; 21-25
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System informatyczny PiAO2 jako narzędzie wspomagające bezwzorcową neuronową klasyfikację pomidorów
Computer system PiAO2 as a tool for assist neural classification of tomatoes without supervision
Autorzy:
Boniecki, P.
Zaborowicz, M.
Przybył, K.
Pilarski, K.
Powiązania:
https://bibliotekanauki.pl/articles/336447.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
pomidory
analiza obrazu
sztuczna inteligencja
sieci neuronowe
systemy informatyczne
tomatoes
image analysis
artificial intelligence
neural networks
computer systems
Opis:
Analiza obrazów oraz pozyskiwanie danych zawartych w obrazach cyfrowych są istotnym elementem w procesie generowania zbiorów uczących, przeznaczonych do budowy modeli neuronowych. Wraz z rozwojem komputerowej analizy obrazu możliwe jest pozyskiwanie coraz większej ilości danych. Dlatego zasadne jest tworzenie nowych oraz modyfikowanie istniejących systemów informatycznych, wspierających neuronową analizę obrazów o nowe funkcje, zwiększające użyteczność tych aplikacji.
Image analysis and gathering data from digital images is an important element in process of generating learning sets for the construction of the neural models. With the development of computer image analysis it is possible to obtain more data. This is a reason to create and develop computer systems that support neural image analysis and increase usability of this software.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2012, 57, 1; 26-28
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatyczny klasyfikator rodzaju uszkodzenia amortyzatora samochodowego
Automatic classifier of the kind of car shock absorber damage
Autorzy:
Cempiel, D.
Powiązania:
https://bibliotekanauki.pl/articles/133451.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Naukowe Silników Spalinowych
Tematy:
diagnozowanie amortyzatorów
metoda EUSAMA
sieć neuronowa
analiza obrazu
automatyczny diagnosta
klasyfikator
shock absorber diagnosis
EUSAMA method
neural network
image analysis
automatic classifier
Opis:
W artykule przedstawiono analizę wpływu czynników zewnętrznych (dodatkowe obciążenie, zmiany ciśnienia w oponach) na wartość wskaźnika EUSAMA. Jednocześnie zaproponowano automatyczną metodę diagnozowania stanu amortyzatorów przy pomocy analizy obrazów z wykorzystaniem sieci neuronowej oceniającej przebieg wartości wskaźnika EUSAMA w czasie. Na potrzeby pracy przygotowano model matematyczny części zawieszenia wraz ze stanowiskiem badawczym opartym o metodę EUSAMA plus. Zamodelowano układ odzwierciedlający dynamikę jednej czwartej zawieszenia pojazdu. Metoda automatycznego diagnozowania stanu amortyzatorów zakłada poprawność przeprowadzonego badania metodą EUSAMA. Uzyskane wyniki spełniły oczekiwania.
The article presents an analysis of the impact of external factors (extra load, tire pressure changes) on the value of the EUSAMA ratio. A method of automatic diagnosis of shock absorbers is proposed. This method is based on image analysis using a neural network appraising the “EUSAMA plus” ratio in the time domain. For the purpose of this paper a mathematical model of quarter of the car suspension with the test stand based on the method EUSAMA was prepared. The method of automatic diagnosis of shock absorbers assumes the correctness of the EUSAMA test. The results met expectations.
Źródło:
Combustion Engines; 2013, 52, 3; 1069-1075
2300-9896
2658-1442
Pojawia się w:
Combustion Engines
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sieci neuronowych do zliczania owadobójczych nicieni
Using neural networks to count insecticidal nematoda
Autorzy:
Chojnacki, J.
Tomkiewicz, D.
Powiązania:
https://bibliotekanauki.pl/articles/289950.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
biologiczny środek ochrony roślin
nicienie
komputerowa analiza obrazu
sieć neuronowa
biological plant pesticide
Nematoda
computer image analysis
neural network
Opis:
Przeprowadzono badania nad wykorzystaniem sieci neuronowych w komputerowej analizie obrazu do zliczania owadobójczych nicieni. Został opracowany klasyfikator składający się z sieci neuronowej, który na podstawie wektora cech otrzymanych z obrazu klasyfikował obiekty na zdjęciu określając z czy obiekty są nicieniami i z jakiej ilości nicieni się składają. W celu optymalnego wyboru wektora cech zastosowano metodę Optimal Brain Surgeon.
The scope of the research involved studies on applying neural networks in computer image analysis for the purposes of counting insecticidal nematoda. The researchers developed a classifier consisting of a neural network, and classifying objects shown on a photo according to the vector of characteristics obtained from the image. Thus, the classifier was determining whether the objects were nematoda and how many nematoda they contained. The Optimal Brain Surgeon method was employed in order to ensure optimal selection of characteristics vector.
Źródło:
Inżynieria Rolnicza; 2008, R. 12, nr 11(109), 11(109); 39-45
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Binaryzacja obrazów mikrofotograficznych oocytów świni domowej w procesie neuronowej analizy obrazu
Binarization of the microphotography images of porcine oocytes in the process of neural image analysis
Autorzy:
Dejewska, T.
Boniecki, P.
Jaśkowski, J. M.
Jakubek, A.
Powiązania:
https://bibliotekanauki.pl/articles/336286.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
binaryzacja
obraz mikrofotograficzny
świnia domowa
analiza obrazu
binarization
microphotography
neural image analysis
Opis:
Celem pracy było zbadanie możliwości pozyskiwania informacji z obrazów przedstawiających oocyty świni domowej z wykorzystaniem procesu binaryzacji, w celu tworzenia zbiorów uczących, niezbędnych do generowania modeli neuronowych. Zwrócono uwagę na główny problem związany z stosowaniem tego przetwarzania, jakim jest dobór odpowiedniego progu. W niniejszym opracowaniu zestawiono efekty zastosowania binaryzacji dla analizowanych zdjęć z wykorzystaniem różnych metod doboru progów. Zweryfikowano celowość używania tej metody w badanych obrazach, jak również przesłanki do stosowania odpowiednich parametrów binaryzacji.
The aim of this study was to analyze the possibilities of the acquisition of information from images of porcine oocytes using binarization. Also attention was paid to the main problem of this processing, which is the selection of an adequate threshold. In this study summarizes the effects of binarization for the analyzed images using different methods of selecting thresholds. Purposefulness of using this method in the test images was verified, as well as the conditions for application of the adequate parameters of binarization.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2011, 56, 2; 37-39
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Principal Component Analysis to Boost the Performance of an Automated Fabric Fault Detector and Classifier
Zastosowanie analizy składników dla poprawy działania automatycznego detektora i klasyfikatora błędów płaskich wyrobów włókienniczych
Autorzy:
Eldessouki, M
Hassan, M
Qashqary, K
Shady, E
Powiązania:
https://bibliotekanauki.pl/articles/231790.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
fabric fault detector
image processing
artificial neural networks
principal component analysis
wyroby włókiennicze
defekty materiałów
sztuczne sieci neuronowe
analiza głównych składowych
Opis:
There is a growing need to replace visual fabric inspection with automated systems that detect and classify fabric defects. The digital processing of fabric images utilises different methods that offer a large set of image features. The correlation between those features lead to problems during fabric fault classification and reduces the performance of the classifiers. This work extracted a combination of statistical (spatial) and Fourier transform (spectral) features from fabric images of the most frequent faults. Principal component analysis (PCA) was implemented to reduce the dimensionality of the input feature dataset, which achieved a reduction to 36% of the original data size while preserving 99% of information in the original dataset. The features processed using the PCA were fed to an artificial neural network (ANN) to classify the fault categories and then compared to another ANN that worked with the whole feature dataset. The performance of the network that was implemented after application of the PCA increased to 90% of the correct classification rate as compared to 73.3% for the other network.
Istnieje wzrastająca potrzeba zamiany wizualnej inspekcji płaskich wyrobów włókienniczych automatyzowanymi systemami , które będą w stanie rozpoznać i sklasyfikować defekty materiału. Dla cyfrowej obróbki obrazów tkanin stosuje się różne metody oferujące identyfikacje całego zestawu właściwości obrazu. Korelacja pomiędzy tymi właściwościami prowadzi do problemów podczas identyfikacji i klasyfikacji błędów materiałów i redukuje sprawność klasyfikacji. W pracy wyselekcjonowano kombinacje statystycznych (przestrzennych) i fourierowskch (spektralnych) transformacji pozwalających na wyróżnienie zobrazów materiałów najczęściej występujących błędów. W dalszej części pracy usiłowano zredukować ilość danych wejściowych oraz zastosowano dwa różne systemy sztucznych sieci neuronowych. Wynikiem wszystkich poczynań było zdecydowane zwiększenie skuteczności wykrywania błędów.
Źródło:
Fibres & Textiles in Eastern Europe; 2014, 4 (106); 51-57
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use of neuron image analysis to build classification model of corpora lutea of domestic cattle
Wykorzystanie neuronowej analizy obrazu w budowie modelu klasyfikacyjnego ciałek żółtych u bydła domowego
Autorzy:
Górna, K.
Zaborowicz, M.
Jaśkowski, B. M.
Idziaszek, P.
Okoń, P.
Boniecki, P.
Przybył, J.
Powiązania:
https://bibliotekanauki.pl/articles/337157.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
neural modeling
computer image analysis
corpus luteum
ovaries
domestic cattle
modelowanie neuronowe
komputerowa analiza obrazu
ciałko żółte
jajnik
bydło domowe
Opis:
The paper presents the results of studies on the usefulness of the texture images USG (ultrasonography) analysis by GLCM (Gray Level Co-Occurrence Matrix) in neural modeling. Tests pertained to the efficacy of the classification of the corpora lutea located in ultrasound images of the domestic cattle ovaries performed by artificial neural networks. The tests were performed using three different methods: the first one used unprocessed images - raw, the second method used image processing - unsharp mask. In the third method the raw images were processed by filter reducing the noise - despeckle filter. For each of the presented methods, the best generated neural network model had the structure of the MLP (Multi Layers Perceptron). The best results, in terms of artificial neural network were obtained in the case of ultrasound images that were not processed prior to texture analysis. As a result, it generated MLP neural model of structure 5:5-8-1:1.
W pracy zaprezentowano wyniki przeprowadzonych badań nad przydatnością analizy tekstury obrazów USG (UltraSonoGraphy) metodą GLCM (Gray Level Co-Occurrence Matrix) w modelowaniu neuronowym. Sprawdzano skuteczność klasyfikacji przez sztuczne sieci neuronowe ciałek żółtych znajdujących się na obrazach USG jajników bydła domowego. Badania wykonano za pomocą trzech różnych metod: w pierwszej wykorzystano obrazy nieprzetworzone - surowe, w drugiej posłużono się metodą przetwarzania obrazu - filtrem wyostrzającym. Natomiast w trzecim sposobie obrazy surowe zostały przetworzone filtrem redukującym zaszumienia. Dla każdej z zaprezentowanych metod, najlepszy wygenerowany model sieci neuronowej miał strukturę MLP (Multi Layer Perceptron). Najlepsze wyniki, pod względem jakości sztucznej sieci neuronowej uzyskano w przypadku obrazów USG, które nie były przetwarzane przed analizą tekstur. W efekcie wygenerowano model neuronowy MLP o strukturze 5:5-8-1:1.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2016, 61, 3; 162-166
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Machine learning system for automated blood smear analysis
Autorzy:
Grochowski, Michał
Wąsowicz, Michał
Mikołajczyk, Agnieszka
Ficek, Mateusz
Kulka, Marek
Wróbel, Maciej S.
Jędrzejewska-Szczerska, Małgorzata
Powiązania:
https://bibliotekanauki.pl/articles/220750.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
optical microscopy
blood cells
biophotonics
image analysis
classification
eigenfaces
neural networks
decision support
nanodiamonds
bioimaging
Opis:
In this paper the authors propose a decision support system for automatic blood smear analysis based onmicroscopic images. The images are pre-processed in order to remove irrelevant elements and to enhancethe most important ones – the healthy blood cells (erythrocytes) and the pathologic ones (echinocytes). The separated blood cells are analysed in terms of their most important features by the eigenfaces method. The features are the basis for designing the neural network classifier, learned to distinguish between erythrocytes and echinocytes. As the result, the proposed system is able to analyse the smear blood images in a fully automatic way and to deliver information on the number and statistics of the red blood cells, both healthy and pathologic. The system was examined in two case studies, involving the canine and human blood, and then consulted with the experienced medicine specialists. The accuracy of classification of red blood cells into erythrocytes and echinocytes reaches 96%.
Źródło:
Metrology and Measurement Systems; 2019, 26, 1; 81-93
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Approach to classifying data with highly localized unmarked features using neural networks
Autorzy:
Grzeszczuk, Rafał
Powiązania:
https://bibliotekanauki.pl/articles/305688.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
classification
neural networks
medical image analysis
Opis:
To face the increasing demand of quality healthcare, cutting-edge automation technology is being applied in demanding areas such as medical imaging. This paper proposes a novel approach to classification problems on datasets with sparse highly localized features. It is based on the use of a saliency map in the amplification of features. Unlike previous efforts, this approach does not use any prior information about feature localization. We present an experimental study based on the Diabetic Retinopathy classification problem, in which our method has shown to achieve an over 20%-higher accuracy in solving a two-class Diabetic Retinopathy classification problem than a naive approach based solely on residual neural networks. The dataset consists of 35,120 images of various qualities, inconsistent resolutions, and aspect ratios.
Źródło:
Computer Science; 2019, 20 (3); 329-342
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metodyka badawcza oraz przygotowanie zbiorów uczących dla sieci neuronowych identyfikujących jakość kompostu
Research methodology and preparation of learning datasets for neural networks identifying compost quality
Autorzy:
Jakubek, A.
Boniecki, P.
Dach, J.
Powiązania:
https://bibliotekanauki.pl/articles/286658.pdf
Data publikacji:
2011
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
kompost
analiza obrazu
sieć neuronowa
sztuczna inteligencja
compost
image analysis
neural network
artificial intelligence
Opis:
Nie istnieje tania i szybka metoda określania stopnia dojrzałości kompostu, która mogłaby zostać przeprowadzona przez osobę nie posiadającą doświadczenia w tej dziedzinie. Podjęto zatem próbę jej estymacji wykorzystując jako narzędzie sztuczne sieci neuronowe. Opisana metodyka przestawia kolejne etapy prac badawczych przeprowadzonych w celu pozyskania reprezentatywnych danych do trenowania inteligentnych systemów klasyfikujących.
There is no cheap and quick method for determining the degree of compost maturity, which could be carried out by a person having no experience in this field. Therefore, there has been an attempt made to estimate it using artificial neural networks as a tool. Described methodology presents subsequent stages of research works carried out in order to acquire representative data for training intelligent classifying systems.
Źródło:
Inżynieria Rolnicza; 2011, R. 15, nr 1, 1; 85-90
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computer image analysis and artificial neuron networks in the qualitative assessment of agricultural products
Komputerowa analiza obrazu i sztuczne sieci neuronowe w ocenie jakościowej produktów rolniczych
Autorzy:
Koszela, K.
Powiązania:
https://bibliotekanauki.pl/articles/956515.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
computer image analysis
vegetable
carrot
quality
artificial neural networks
komputerowa analiza obrazu
warzywa
marchew
jakość
sztuczne sieci neuronowe
Opis:
The increasing use of modern information technology in agriculture involves an ever wider range of production, planning, monitoring and marketing processes. Information technologies are being applied in animal and plant production, and recent decades have witnessed a dynamic growth in research into artificial intelligence and thus into advisory (expert) systems such as artificial neuron networks. Obviously this is not the result of a coincidence or a temporary trend, this dynamic development has been made possible thanks to the rapid advancement of computer technology, allowing ever increasing speeds and volumes of data collection and processing. A large number of research-scientific work with the use of computer image analysis, computer-aided decision making and state of the art modelling tools, including artificial neuron networks, is carried out within the scope of agricultural engineering. The computer-aided decision making process in the area of the qualitative assessment of agri-food products is one of those areas using computer image analysis and neuron modelling. The objective of this research project was to develop and describe a computer image analysis method based on the example of carrots and lyophilisation dehydrates for the purpose of the qualitative assessment and classification of individual categories in the analysed sample in terms of quality.
Zastosowanie coraz bardziej nowoczesnych technologii informatycznych w rolnictwie obejmuje coraz szerszy zakres procesów produkcji, planowania, monitorowania i marketingu. Stosowane techniki informatyczne wykorzystuje się w technologii produkcji zwierzęcej oraz roślinnej. W ciągu ostatnich dekad można zaobserwować dynamiczny rozwój badań nad sztuczną inteligencją, a tym samym nad badaniami w zakresie systemów doradczych (ekspertowych), jak również nad sztucznymi sieciami neuronowymi. Oczywiście nie jest to wynik zbiegu okoliczności czy rezultat chwilowej mody. Ten burzliwy rozwój jest możliwy dzięki szybkiemu postępowi techniki komputerowej, która umożliwia zapamiętywanie coraz większej liczby danych oraz coraz szybsze jej przetwarzanie. Duża liczba prac badawczo-naukowych z wykorzystaniem komputerowej analizy obrazów, komputerowego wspomagania decyzji i nowoczesnych narzędzi modelowania, jakimi są sztuczne sieci neuronowe, realizowana jest w ramach inżynierii rolniczej. Jednym z obszarów wykorzystywania komputerowej analizy obrazów i modelowania neuronowego jest wspomaganie podejmowania decyzji w zakresie oceny jakościowej produktów rolno-spożywczych. Celem projektu badawczego było opracowanie i charakterystyka metody komputerowej analizy obrazów na przykładzie korzeni marchwi oraz suszu liofilizacyjnego do oceny jakościowej i klasyfikacji poszczególnych klas w badanej próbie pod względem jakości.
Źródło:
Agricultural Engineering; 2015, 19, 3; 15-24
2083-1587
Pojawia się w:
Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja suszu pietruszki z wykorzystaniem sztucznych sieci neuronowych
Classification of dried parsnip using artificial neural networks
Autorzy:
Koszela, K.
Powiązania:
https://bibliotekanauki.pl/articles/336411.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
zastosowanie komputerów
analiza obrazów
sztuczna inteligencja
sieci neuronowe
susz pietruszki
computer applications
image analysis
artificial intelligence
neural networks
dried parsnip
Opis:
W ostatnich latach prace naukowo-badawcze realizowane w inżynierii rolniczej coraz częściej wykorzystują nowoczesne narzędzie modelowania, jakim są sztuczne sieci neuronowe. To narzędzie, jako uniwersalny aproksymator, w połączeniu z komputerową analizą obrazów, stosowane jest do tworzenia modeli empirycznych, opisujących zjawiska i procesy występujące w pozyskiwaniu i przetwarzaniu materiałów roślinnych. Szczególną cechą sztucznych sieci neuronowych jest zdolność uogólniania nabytej wiedzy, co jest ważnym aspektem w badaniach na obiektach o dużej liczbie czynników determinujących dany proces. Celem pracy badawczej było opracowanie modelu neuronowego do oceny jakości suszu pietruszki i jego klasyfikacji na podstawie cyfrowych fotografii. Do analizy i klasyfikacji wykorzystano susz pietruszki pozyskany metodą konwekcyjną. Do modelu klasyfikacyjnego wybrano cechy charakterystyczne, które umożliwiały klasyfikację ze względu na jakość suszu. W wyniku przeprowadzonych badań wygenerowano kilka modeli neuronowych, które poddano weryfikacji i walidacji.
In recent years, agricultural engineers working in research have been using modern modeling tools, such as artificial neural networks, with increasing frequency. This tool, as a universal approximator together with computer image analysis is used to create empirical models that describe phenomena and processes involved in extracting and processing plant materials. Artificial neural networks are able to generalize from acquired knowledge, and this is an important feature when analyzing data involving a large range of factors to determine a given process. The objective of this research work was to develop a neural model allowing the assessment of dried parsnip quality and its classification on the basis of digital photos. Obtained by the convection method, the dried parsnip was analysed and classified. Its characterisctic features were chosen, allowing classification according to quality. As the result of the research, a number of generated neural models were verified and validated.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2012, 57, 1; 87-90
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The use of neural image analysis in the identification of information encoded in a graphical form
Wykorzystanie neuronowej analizy obrazów w identyfikacji informacji zakodowanej w formie graficznej
Autorzy:
Koszela, K.
Boniecki, P.
Kuzimska, T.
Powiązania:
https://bibliotekanauki.pl/articles/956540.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
identification of class oocytes
quality classification
computer image analysis
image analysis
artificial neural networks
identyfikacja klas oocytów
klasyfikacja jakościowa
analiza obrazu
sztuczne sieci neuronowe
Opis:
Numerous scientific and research centres are searching for solutions concerning the problem of quality classification of animal oocytes. Conducting such studies is purposeful, particularly in the context of constant attempts to improve the quality of food products, which depends on the breeding value of livestock. Therefore, searching for methods of stimulation of proper development of a larger number of animal oocytes, particularly in extracorporeal conditions, gains special importance. An increasing interest in assisted reproduction techniques resulted in searching for new, increasingly effective methods of quality assessment of mammalian gametes and embryos. The expected progress in the production of animal embryos in vitro is largely dependent on proper classification of obtained oocytes. The aim of this work was to develop a non-invasive method for the quality assessment of oocytes, performed on the basis of graphic information encoded in the form of monochromatic digital images obtained via microscopy techniques. The classification process was conducted based on the information presented in the form of microphotography pictures of domestic pig oocytes, using advanced methods of neural image analysis.
Rozwiązaniem problemu klasyfikacji jakościowej oocytów zwierzęcych zajmuje się wiele różnych ośrodków naukowo-badawczych. Celowość prowadzenia takich badań jest uzasadniona szczególnie w kontekście ciągłego dążenia do podnoszenia jakości produktów żywnościowych, która jest pochodną wartości hodowlanej zwierząt gospodarskich. W związku z tym, istotnego znaczenia nabierają poszukiwania metod prowadzących do stymulowania prawidłowego rozwoju większej liczby zapładnianych oocytów zwierzęcych, zwłaszcza realizowanego w warunkach pozaustrojowych. Rosnące zainteresowanie technikami wspomaganego rozrodu stało się przyczyną poszukiwania nowych, coraz bardziej efektywnych metod oceny jakościowej gamet oraz zarodków ssaków. Oczekiwany postęp w produkcji zarodków in vitro zwierząt uzależniony jest w istocie od poprawnej klasyfikacji pozyskiwanych oocytów. Celem pracy było opracowanie bezinwazyjnej metody oceny jakościowej oocytów dokonywanej w oparciu o informację graficzną zakodowana w postaci monochromatycznych obrazów cyfrowych pozyskanych metodą mikroskopową. Proces klasyfikacji zrealizowano w oparciu o informację prezentowaną w formie zdjęć mikrofotograficznych oocytów świni domowej, wykorzystując w tym celu nowoczesne metody neuronowej analizy obrazu.
Źródło:
Agricultural Engineering; 2015, 19, 3; 25-35
2083-1587
Pojawia się w:
Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies