- Tytuł:
-
Mathematical induction in proving of theorems about natural numbers divisibility
Indukcja matematyczna w dowodzeniu twierdzeń o podzielności liczb naturalnych - Autorzy:
-
Żywuszko, K.
Czajkowski, A. A. - Powiązania:
- https://bibliotekanauki.pl/articles/135988.pdf
- Data publikacji:
- 2013
- Wydawca:
- Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
- Tematy:
-
natural numbers
divisibility
proof
mathematical induction
liczby naturalne
podzielność
dowód
indukcja matematyczna - Opis:
-
Introduction and aims: This paper presents the concept of the division of mathematical
expressions with natural variable related to the problem of divisibility. The paper shows some
proofs of selected problem. The main aim of this paper is to show a few proofs of theorems about
divisibility of expressions by using the method of mathematical induction.
Material and methods: In this paper have been solved examples from different sources.
Considered problems contain: only polynomials, the sum of powers of different bases (and
constant as a component), the sum of the products of powers with different bases (and constant as
a component), the sum of the powers and polynomials, the sum of the products of powers and
polynomials, the sum containing the power of (-1), Fibonacci sequence, the expression containing
a power of the power and problems containing power in divider. In the paper has been used the
method of mathematical induction.
Results: It has been shown 16 proofs of problems by using mathematical induction. In some
examples have been used the additional lemmas which complete the main proof.
Conclusion: Using some properties of divisibility theorems and the theorem about mathematical
induction allow to show proofs which refer to the divisibility by natural number of various
mathematical expressions with natural variable n.
Wstęp i cele: W pracy przedstawiono koncepcję podziału wyrażeń matematycznych ze zmienną naturalną odnoszących się do problemu podzielności a także przedstawiono dowody wybranych zadań. Głównym celem pracy jest pokazanie sposobu dowodzenia twierdzeń o podzielności wyrażeń przy zastosowaniu metody indukcji matematycznej. Materiał i metody: W pracy rozwiązano przykłady z różnych źródeł. Rozważono zadania zawierające: tylko wielomiany, sumy potęg o różnych podstawach (i stałą w roli składnika), sumy iloczynów potęg o różnych podstawach (i stałą w roli składnika), sumy potęg i wielomianów, sumy iloczynów potęg i wielomianów, sumy zawierające potęgę (-1), ciąg Fibonacciego, wyrażenia zawierające potęgę potęgi oraz zadania zawierające potęgę w dzielniku. Zastosowano metodę indukcji matematycznej. Wyniki: Przeprowadzono dowody 16 przykładów przy użyciu indukcji matematycznej. W niektórych przykładach zastosowano dodatkowo dowody lematów, które uzupełniają całość dowodu głównego. Wniosek: Korzystanie z pewnych właściwości twierdzeń o podzielności i twierdzenia o indukcji matematycznej pozwala pokazać dowody, które odnoszą się do podzielności przez liczby naturalne różnych wyrażeń matematycznych ze zmienną naturalną. - Źródło:
-
Problemy Nauk Stosowanych; 2013, 1; 101-116
2300-6110 - Pojawia się w:
- Problemy Nauk Stosowanych
- Dostawca treści:
- Biblioteka Nauki