Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "maritime autonomous surface ships" wg kryterium: Temat


Wyświetlanie 1-15 z 15
Tytuł:
Verification of a deterministic ships safe trajectory planning algorithm from different ships’ perspectives and with changing strategies of target ships
Autorzy:
Lazarowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/2063957.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
safe ship's trajectory
ship's trajectory
collision avoidance module
autonomous navigation system
maritime autonomous surface ships
Opis:
The paper presents results of a ship's safe trajectory planning method verification - the Trajectory Base Algorithm, which is a deterministic approach for real-time path-planning with collision avoidance. The paper presents results of the algorithm’s verification from different ships’ perspectives and with changing strategies of target ships. Results prove the applicability of the algorithm in the Collision Avoidance Module of the Autonomous Navigation System for Maritime Autonomous Surface Ships.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2021, 15, 3; 623--628
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Understanding the Interrelation between the Safety of Life at Sea Convention and Certain IMO’s Code
Autorzy:
Guevara, D.
Dalaklis, D.
Powiązania:
https://bibliotekanauki.pl/articles/1841521.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
SOLAS Convention
Maritime Autonomous Surface Ships
International Maritime Organization
IMO’s Codes
ISM Code
Safety of Navigation
Navigational Safety Risk Assessment
Opis:
Over the last few decades, the International Maritime Organization (IMO) has very heavily utilized the Safety of Life at Sea (SOLAS), 1974 Convention as the main legal instrument (and implementation tool) concerning safety at sea for merchant vessels engaged in international trade. During this more than a century of existence and continuous improvement of the Convention, wide-ranging safety risks have been addressed via SOLAS and certain relevant “supporting” Codes, covering for example the issues of design, construction and equipment of ships, as well as paving the way for the introduction of a structured framework of operational procedures that ensures a high level of professional performance for the crew onboard those seagoing vessels (the International Management Code for the Safe Operation of Ships and for Pollution Prevention-ISM Code) and even including human factors topics. Until this point in time, the IMO has developed the SOLAS Convention with fourteen (14) chapters that are covering all the main risks associated with shipping operations and are working in parallel with other related Conventions and Codes to enhance the level of safety at sea, under a holistic approach that is working under the principle of interrelation. This paper aims to briefly discuss SOLAS’ history of development and highlight just a few of those important risks that this Convention is addressing, with certain emphasis on the topic of “safety of navigation”. Apart from helping to understand the way this Convention and other IMO’s legal instruments are interrelated, it will also provide a few educated guesses about the “upcoming” challenges that in the near future should also be included into the scope of the SOLAS, with the topic of Maritime Autonomous Surface Ships (MAAS) clearly standing out.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2021, 15, 2; 381-389
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trends and challenges in unmanned surface vehicles (USV): From survey to shipping
Autorzy:
Barrera, C.
Padron, I.
Luis, F. S.
Llinas, O.
Powiązania:
https://bibliotekanauki.pl/articles/1841556.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
unmanned vehicles
unmanned surface vehicles
guidance
navigation and control
Oceanic Platform of the Canary Islands
MUNIN project
maritime autonomous surface ships
advanced autonomous waterborne application
association for unmanned systems international
Opis:
Autonomy and unmanned systems have evolved significantly in recent decades, becoming a key routine component for various sectors and domains as an intrinsic sign of their improvement, the ocean not being an exception. This paper shows the transition from the research concept to the commercial product and related services for Unmanned Surface Vehicles (USV). Note that it has not always been easy in most cases due to the limitations of the technology, business, and policy framework. An overview of current trends in USV technology looking for a baseline to understand the sector where some experiences of the authors are shown in this work. The analysis presented shows a multidisciplinary approach to the field. USV's capabilities and applications today include a wide range of operations and services aimed at meeting the specific needs of the maritime sector. This important consideration for USV has yet to be fully addressed, but progress is being made.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2021, 15, 1; 135-142
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Safe vessel operations – the tacit knowledge of navigators
Autorzy:
Dreyer, L. O.
Powiązania:
https://bibliotekanauki.pl/articles/24201480.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
collision avoidance
navigators' behavior
safe speed determination
maritime autonomous surface ships
understanding the colregs
expert interview
work-as-done
work-as-imagined
Opis:
The collision regulations include several qualitative terms without providing guidance as to how these terms could be understood in quantitative terms. These terms must therefore be interpreted by navigators, which poses a problem for autonomous ships. Extend the knowledge of how navigators interpret the collision regulations, with a specific focus on how they interpret the rule covering the requirement to proceed at a safe speed. Qualitative study based on interviews of a convenience sample of eight Norwegian navigators. Data was analysed with systematic text condensation. Navigators characterise safe speed as a speed in which they have control. Navigators do not look at different factors mentioned in the collision regulations in isolation, but within the context of the situation. Determining the safe speed of a vessel is more complicated than made out in the literature. As autonomous ships will have to cooperate with conventional vessels, their programming must include the knowledge of how the collision regulations are interpreted by human navigators.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2023, 17, 3; 579--586
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Preliminary results of a system-theoretic assessment of maritime autonomous surface ships’ safety
Autorzy:
Wróbel, K.
Krata, P.
Montewka, J.
Powiązania:
https://bibliotekanauki.pl/articles/117567.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Maritime Autonomous Surface Ships (MASS)
autonomous ship
MUNIN project
Advanced Autonomous Waterborne Application (AAWA)
System-Theoretic Process Analysis (STPA)
System-Theoretic Accident Model and Process (STAMP)
unmanned shipping system
safety at sea
Opis:
While a system-theoretic approach to the safety analysis of innovative socio-technical systems gains a growing acceptance among academia, safety issues of Maritime Autonomous Surface Ships (MASS) remain largely unexplored. Therefore, we applied a System-Theoretic Process Analysis to develop and analyze a preliminary model of the unmanned shipping system in order to elaborate safety recommendations for future developers of the actual system. Results indicate that certain advancements shall be undertaken in relation to MASS’ software solutions in particular.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 4; 717-723
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Operations of maritime autonomous surface ships
Autorzy:
Pietrzykowski, J.
Pietrzykowski, Z.
Hajduk, J.
Powiązania:
https://bibliotekanauki.pl/articles/117150.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Maritime Autonomous Surface Ships (MASS)
autonomous ship
MASS technology
MASS autonomy
MASS safety
Advanced Autonomous Waterborne Application (AAWA)
Sea Traffic Management (STM)
situational awareness at sea
Opis:
Advancing technologies create unique opportunities for constructing autonomous ships, which, in turn, raise growing interest of the maritime industry, shipowners in particular. These authors have analyzed actions taken in this field and some aspects related to the operations of maritime autonomous surface ships (MASS). The presented case study refers to a ship with a skeleton crew on a deep sea voyage, where the ship’s autonomy is narrowed to the fourth stage of transport task – sea voyage and its navigational aspect.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 4; 725-733
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Operationalising automation transparency for maritime collision avoidance
Autorzy:
van de Merwe, K.
Mallam, S.
Engelhardtsen, Ø.
Nazir, S.
Powiązania:
https://bibliotekanauki.pl/articles/24201442.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
automation transparency
collision avoidance
human machine interface
human centrered design
supervisory control
anti-collision maneuvering
human-automation interaction
maritime autonomous surface ships
Opis:
Automation transparency is a means to provide understandability and predictability of autonomous systems by disclosing what the system is currently doing, why it is doing it, and what it will do next. To support human supervision of autonomous collision avoidance systems, insight into the system’s internal reasoning is an important prerequisite. However, there is limited knowledge regarding transparency in this domain and its relationship to human supervisory performance. Therefore, this paper aims to investigate how an information processing model and a cognitive task analysis could be used to drive the development of transparency concepts. Also, realistic traffic situations, reflecting the variation in collision type and context that can occur in real-life, were developed to empirically evaluate these concepts. Together, these activities provide the groundwork for exploring the relation between transparency and human performance variables in the autonomous maritime context.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2023, 17, 2; 333--339
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the future of maritime transport – discussing terminology and timeframes
Autorzy:
Hult, C.
Praetorius, G.
Sandberg, C.
Powiązania:
https://bibliotekanauki.pl/articles/117279.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
maritime transport
future of shipping
shipping
maritime Aautonomous surface ships (MASS)
autonomous ship
smart ship
intelligent ship
unmanned ship
Opis:
This paper offers an analytical discussion on the terminology and timeframes related to the future of shipping. The discussion is based on issues that have surfaced within the Swedish research project Autonomy and responsibility. The paper argues that the concept ‘autonomous ships’ has become an indicator of that seafarers soon will become obsolete – which may have negative consequences for the supply of maritime competence in coming years - and that the proper definition of the term ‘autonomous’ describes something that will never apply to a ship. Ships can be given the possibility, but hardly the full right or condition of self-government. It is argued that ‘smart ships’, or perhaps ‘intelligent ships’, are more appropriate, since these terms describe the current and future state of technology without predicting how humans will prefer to use it. The estimated timeframes for implementation of unmanned ships suggest no threat to the seafaring occupation for coming generation. The content of the occupation will of course change due to the phase of implementation of degree of digitalization, but there will always be a need for maritime knowledge and understanding.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 2; 269-273
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Merging conventionally navigating ships and MASS - Merging VTS, FOC and SCC?
Autorzy:
Baldauf, M.
Fischer, S.
Kitada, M.
Mehdi, R. A.
Al-Quhali, M. A.
Fiorini, M.
Powiązania:
https://bibliotekanauki.pl/articles/117306.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Maritime Autonomous Surface Ships (MASS)
Vessel Traffic Service (VTS)
e-Navigation
fleet operation centre (FOC)
International Maritime Organization (IMO)
ship control centre (SCC)
unmanned shipping
unmanned ship
Opis:
Current maritime transportation and shipping is characterized by rapid technological developments effecting the basic concepts of operating ships and even changing traditional paradigms of controlling ships. The e-Navigation concept of the International Maritime Organization (IMO) specifically aims at more comprehensive and reliable support of the human operators on-board and ashore. However, autonomous unmanned ships remote controlled or even autonomously navigating are expected to come soon. In this paper, selected operational aspects of maritime traffic merging conventional and unmanned remote controlled ships in coastal areas are discussed. Furthermore, some preliminary results of experimental simulation studies into a future scenario of maritime traffic are presented and preliminary conclusions in respect to job profiling and training requirements are discussed.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 3; 495-501
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Maritime Autonomous Surface Ships (MASS) and the COLREGS: Do we need quantified rules or is “the ordinary practice of seamen” specific enough?
Autorzy:
Porathe, T.
Powiązania:
https://bibliotekanauki.pl/articles/116796.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Maritime Autonomous Surface Ships (MASS)
colregs
collision avoidance
ordinary practice of seamen
officer of the watch (OOW)
shore control centre (SCC)
operational design domain (ODD)
anti-collision
Opis:
Maritime Autonomous Surface Ships (MASS) is currently on the agenda in several countries and also in the IMO. In Norway a 120 TEU container feeder is being build and will start sailing autonomously in 2022. The challenge is huge. One question is whether or not the present, quantitative, collision regulations needs to be updated to rules where expressions as “early” and “substantial” are quantified? Or if ships can sail autonomously under the present rules? Another question is if MASS should be marked to signal that the ship is in autonomous mode? Or if it is enough that she follows COLREGS? This discussion paper will take a closer look at these questions and advocate automation transparency, meaning that the behavior of an autonomous vessel has to make sense and be understandable to human operators on other manned ships and crafts.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 3; 511-517
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent autonomous ship navigation using multi-sensor modalities
Autorzy:
Wright, R.G.
Powiązania:
https://bibliotekanauki.pl/articles/117337.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
maritime autonomous surface ships (MASS)
artificial intelligence (AI)
intelligent autonomous ship navigation
autonomous ship
autonomous ships navigation
multiSensor modalities
unmanned ship
maritime domain awareness (MDA)
Opis:
This paper explores the use of machine learning and deep learning artificial intelligence (AI) techniques as a means to integrate multiple sensor modalities into a cohesive approach to navigation for autonomous ships. Considered is the case of a fully autonomous ship capable of making decisions and determining actions by itself without active supervision on the part of onboard crew or remote human operators. These techniques, when combined with advanced sensor capabilities, have been touted as a means to overcome existing technical and human limitations as unmanned and autonomous ships become operational presently and in upcoming years. Promises of the extraordinary capabilities of these technologies that may even exceed those of crewmembers for decision making under comparable conditions must be tempered with realistic expectations as to their ultimate technical potential, their use in the maritime domain, vulnerabilities that may preclude their safe operation; and methods for development, integration and test. The results of research performed by the author in specific applications of machine learning and AI to shipping are presented citing key factors that must be achieved for certification of these technologies as being suitable for their intended purpose. Recommendations are made for strategies to surmount present limitations in the development, evaluation and deployment of intelligent maritime systems that may accommodate future technological advances. Lessons learned that may be applied to improve safety of navigation for conventional shipping are also provided.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 3; 503-510
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
From ship to shore – studies into potential practical consequences of autonomous shipping on VTS operation and training
Autorzy:
Janssen, T.
Baldauf, M.
Claresta, G.
Powiązania:
https://bibliotekanauki.pl/articles/24201459.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
vessel traffic service
maritime autonomous surface ships
e-Navigation
digitalization
VTS Operator
maritime education and training
traffic surveillance
VTS guideline
Opis:
Vessel Traffic Services (VTS) are to improve the safety and efficiency of vessel traffic and to protect the marine environment by interacting with the ship’s traffic in monitored coastal areas. Today, VTS operators are maritime professionals with nautical education from a university or technical college and practical experience on board. This experience and nautical background is a key element of the work as a VTS operator. It is to support understanding the daily work. The current situation in the maritime domain is undergoing substantial changes, such as introducing new technologies, implementing the e-Navigation concept based on sustainable digitalization and ambitions to realize unmanned and autonomous shipping. This paper will present preliminary results of a pilot study conducted in VTS Centres along the coast of North and Baltic Sea and discuss selected options and opportunities for education and training of future VTS operators, which might not have the advantage of practical sea experience anymore.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2023, 17, 2; 383--390
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Framework of an evolutionary multi-objective optimisation method for planning a safe trajectory for a marine autonomous surface ship
Autorzy:
Szłapczyński, Rafał
Ghaemi, Hossein
Powiązania:
https://bibliotekanauki.pl/articles/259121.pdf
Data publikacji:
2019
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
maritime autonomous surface ships
evolutionary multi-objective optimisation
ship manoeuvres
fuel consumption
ship collision avoidance
Opis:
This paper represents the first stage of research into a multi-objective method of planning safe trajectories for marine autonomous surface ships (MASSs) involved in encounter situations. Our method applies an evolutionary multiobjective optimisation (EMO) approach to pursue three objectives: minimisation of the risk of collision, minimisation of fuel consumption due to collision avoidance manoeuvres, and minimisation of the extra time spent on collision avoidance manoeuvres. Until now, a fully multi-objective optimisation has not been applied to the real-time problem of planning safe trajectories; instead, this optimisation problem has usually been reduced to a single aggregated cost function covering all objectives. The aim is to develop a method of planning safe trajectories for MASSs that is able to simultaneously pursue the three abovementioned objectives, make decisions in real time and without interaction with a human operator, handle basic types of encounters (in open or restricted waters, and in good or restricted visibility) and guarantee compliance with the International Regulations for Preventing Collisions at Sea. It should also be mentioned that optimisation of the system based on each criterion may occur at the cost of the others, so a reasonable balance is applied here by means of a configurable trade-off. This is done throughout the EMO process by means of modified Pareto dominance rules and by using a multi-criteria decision-making phase to filter the output Pareto set and choose the final solution.
Źródło:
Polish Maritime Research; 2019, 4; 69-79
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of problems related to the carriage of goods by sea between traditional and autonomous vessels
Autorzy:
Pijacar, M.
Bulum, B.
Powiązania:
https://bibliotekanauki.pl/articles/1841557.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
autonomous vessels
Carriage of Goods
artificial intelligence
International Maritime Organization
maritime autonomous surface ships
safe port warranty
sea transportation
carriage of goods by sea
Opis:
When performing the carriage of goods by sea, each contracting party, shipowner and charterer, has a number of rights and obligations. In legal sources which regulate carriage of goods by sea, in particular contracts concluded between parties, international conventions and national laws, standard clause is shipowner's obligation to provide a seaworthy vessel. Such obligation implies that the vessel must be able to carry and keep the contracted cargo in good condition and also have required number of qualified crew. On the other side, charterer's obligation is to order the vessel to sail to ports/berths which are considered safe (safe port warranty). Also, legal sources of carriage of goods by sea regulate liability issues for loading and discharging operations, the limitation of the shipowner’s liability and application of provisions related to exclusion of liability. All of the above represent important rights and obligations of the regulation of the carriage of goods by sea, and so regulated thus far have been common in the carriage of goods by sea by traditional vessels. However, the question that arises is how the problems related to the carriage of goods by sea will be regulated when such carriage is performed by autonomous vessels. In other words, there is a question about interpretation of the provisions of seaworthiness, safe port warranty, liability and the limitation of the shipowner’s liability and exclusion of liability in the carriage of goods by sea by autonomous ships. The purpose of this paper is comparison of problems related to the carriage of goods by sea between the traditional and autonomous vessels, and regarding the regulation of seaworthiness, safe port warranty, liability, the limitation of the shipowner’s liability and exclusion of liability. The results of this comparison lead to the conclusion that reconsideration of the content of the listed terms is needed when we are talking about carriage of goods by sea by autonomous vessels.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2021, 15, 1; 125-131
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Addressing theaccidental risks of maritime transportation: could autonomous shipping technology improve the statistics?
Autorzy:
Hoem, Å.S.
Fjørtoft, K.
Rødseth, Ø.J.
Powiązania:
https://bibliotekanauki.pl/articles/116850.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Maritime Autonomous Surface Ships (MASS)
autonomous ship
autonomous shipping technology
maritime transportation
maritime accidents
human error
maritime risk
accident statistics
Opis:
A paradigm shift is presently underway in the shipping industry promising safer, greener and more efficient ship traffic. In this article, we will look at some of the accidents from conventional shipping and see if they could have been avoided with autonomous ship technology. A hypothesis of increased safety is often brought forward, and we know from various studies that the number of maritime accidents that involves what is called “human error” ranges from some 60‐90 percent. If we replace the human with automation, can we then reduce the number of accidents? On the other hand, is there a possibility for new types of accidents to appear? What about the accidents that are today averted by the crew? This paper will present a method to assess these different aspects of the risk scenarios in light of the specific capabilities and constraints of autonomous ships.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 3; 487-494
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-15 z 15

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies