Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "maritime autonomous surface ship" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Control of electric drive tugboat autonomous formation
Autorzy:
Koznowski, W.
Łebkowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/24201460.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
autonomous tugboat
electric tugboat
electric drive
multiagent system
tugboat formation
ship formation
passage route
maritime autonomous surface ship
Opis:
The automation of maritime transport is an indispensable trend towards full autonomy of maritime vessels. In this paper, an attempt was made to present the control system for port autonomous vessels using an agent system. On the basis of the conducted research, in order to optimize the energy consumption related to the movement of tugboats, the shape of the hull and the shape of the formation in which 4 tugboats are moving were selected. Several scenarios of navigational situations that may take place in port waters have been recognized. The conducted analysis have shown that the optimal shape of the hull of tugboats, the shape of the formation in which they move, as well as the determination of the passage route for the implementation of a specific task, can contribute to reducing both the carbon footprint and the energy consumption of the propulsion systems of tugboats. This is of significant importance in terms of reducing exhaust gas emissions in and around ports.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2023, 17, 2; 391--396
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Addressing theaccidental risks of maritime transportation: could autonomous shipping technology improve the statistics?
Autorzy:
Hoem, Å.S.
Fjørtoft, K.
Rødseth, Ø.J.
Powiązania:
https://bibliotekanauki.pl/articles/116850.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Maritime Autonomous Surface Ships (MASS)
autonomous ship
autonomous shipping technology
maritime transportation
maritime accidents
human error
maritime risk
accident statistics
Opis:
A paradigm shift is presently underway in the shipping industry promising safer, greener and more efficient ship traffic. In this article, we will look at some of the accidents from conventional shipping and see if they could have been avoided with autonomous ship technology. A hypothesis of increased safety is often brought forward, and we know from various studies that the number of maritime accidents that involves what is called “human error” ranges from some 60‐90 percent. If we replace the human with automation, can we then reduce the number of accidents? On the other hand, is there a possibility for new types of accidents to appear? What about the accidents that are today averted by the crew? This paper will present a method to assess these different aspects of the risk scenarios in light of the specific capabilities and constraints of autonomous ships.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 3; 487-494
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent autonomous ship navigation using multi-sensor modalities
Autorzy:
Wright, R.G.
Powiązania:
https://bibliotekanauki.pl/articles/117337.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
maritime autonomous surface ships (MASS)
artificial intelligence (AI)
intelligent autonomous ship navigation
autonomous ship
autonomous ships navigation
multiSensor modalities
unmanned ship
maritime domain awareness (MDA)
Opis:
This paper explores the use of machine learning and deep learning artificial intelligence (AI) techniques as a means to integrate multiple sensor modalities into a cohesive approach to navigation for autonomous ships. Considered is the case of a fully autonomous ship capable of making decisions and determining actions by itself without active supervision on the part of onboard crew or remote human operators. These techniques, when combined with advanced sensor capabilities, have been touted as a means to overcome existing technical and human limitations as unmanned and autonomous ships become operational presently and in upcoming years. Promises of the extraordinary capabilities of these technologies that may even exceed those of crewmembers for decision making under comparable conditions must be tempered with realistic expectations as to their ultimate technical potential, their use in the maritime domain, vulnerabilities that may preclude their safe operation; and methods for development, integration and test. The results of research performed by the author in specific applications of machine learning and AI to shipping are presented citing key factors that must be achieved for certification of these technologies as being suitable for their intended purpose. Recommendations are made for strategies to surmount present limitations in the development, evaluation and deployment of intelligent maritime systems that may accommodate future technological advances. Lessons learned that may be applied to improve safety of navigation for conventional shipping are also provided.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 3; 503-510
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Verification of a deterministic ships safe trajectory planning algorithm from different ships’ perspectives and with changing strategies of target ships
Autorzy:
Lazarowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/2063957.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
safe ship's trajectory
ship's trajectory
collision avoidance module
autonomous navigation system
maritime autonomous surface ships
Opis:
The paper presents results of a ship's safe trajectory planning method verification - the Trajectory Base Algorithm, which is a deterministic approach for real-time path-planning with collision avoidance. The paper presents results of the algorithm’s verification from different ships’ perspectives and with changing strategies of target ships. Results prove the applicability of the algorithm in the Collision Avoidance Module of the Autonomous Navigation System for Maritime Autonomous Surface Ships.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2021, 15, 3; 623--628
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the future of maritime transport – discussing terminology and timeframes
Autorzy:
Hult, C.
Praetorius, G.
Sandberg, C.
Powiązania:
https://bibliotekanauki.pl/articles/117279.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
maritime transport
future of shipping
shipping
maritime Aautonomous surface ships (MASS)
autonomous ship
smart ship
intelligent ship
unmanned ship
Opis:
This paper offers an analytical discussion on the terminology and timeframes related to the future of shipping. The discussion is based on issues that have surfaced within the Swedish research project Autonomy and responsibility. The paper argues that the concept ‘autonomous ships’ has become an indicator of that seafarers soon will become obsolete – which may have negative consequences for the supply of maritime competence in coming years - and that the proper definition of the term ‘autonomous’ describes something that will never apply to a ship. Ships can be given the possibility, but hardly the full right or condition of self-government. It is argued that ‘smart ships’, or perhaps ‘intelligent ships’, are more appropriate, since these terms describe the current and future state of technology without predicting how humans will prefer to use it. The estimated timeframes for implementation of unmanned ships suggest no threat to the seafaring occupation for coming generation. The content of the occupation will of course change due to the phase of implementation of degree of digitalization, but there will always be a need for maritime knowledge and understanding.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 2; 269-273
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Framework of an evolutionary multi-objective optimisation method for planning a safe trajectory for a marine autonomous surface ship
Autorzy:
Szłapczyński, Rafał
Ghaemi, Hossein
Powiązania:
https://bibliotekanauki.pl/articles/259121.pdf
Data publikacji:
2019
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
maritime autonomous surface ships
evolutionary multi-objective optimisation
ship manoeuvres
fuel consumption
ship collision avoidance
Opis:
This paper represents the first stage of research into a multi-objective method of planning safe trajectories for marine autonomous surface ships (MASSs) involved in encounter situations. Our method applies an evolutionary multiobjective optimisation (EMO) approach to pursue three objectives: minimisation of the risk of collision, minimisation of fuel consumption due to collision avoidance manoeuvres, and minimisation of the extra time spent on collision avoidance manoeuvres. Until now, a fully multi-objective optimisation has not been applied to the real-time problem of planning safe trajectories; instead, this optimisation problem has usually been reduced to a single aggregated cost function covering all objectives. The aim is to develop a method of planning safe trajectories for MASSs that is able to simultaneously pursue the three abovementioned objectives, make decisions in real time and without interaction with a human operator, handle basic types of encounters (in open or restricted waters, and in good or restricted visibility) and guarantee compliance with the International Regulations for Preventing Collisions at Sea. It should also be mentioned that optimisation of the system based on each criterion may occur at the cost of the others, so a reasonable balance is applied here by means of a configurable trade-off. This is done throughout the EMO process by means of modified Pareto dominance rules and by using a multi-criteria decision-making phase to filter the output Pareto set and choose the final solution.
Źródło:
Polish Maritime Research; 2019, 4; 69-79
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Merging conventionally navigating ships and MASS - Merging VTS, FOC and SCC?
Autorzy:
Baldauf, M.
Fischer, S.
Kitada, M.
Mehdi, R. A.
Al-Quhali, M. A.
Fiorini, M.
Powiązania:
https://bibliotekanauki.pl/articles/117306.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Maritime Autonomous Surface Ships (MASS)
Vessel Traffic Service (VTS)
e-Navigation
fleet operation centre (FOC)
International Maritime Organization (IMO)
ship control centre (SCC)
unmanned shipping
unmanned ship
Opis:
Current maritime transportation and shipping is characterized by rapid technological developments effecting the basic concepts of operating ships and even changing traditional paradigms of controlling ships. The e-Navigation concept of the International Maritime Organization (IMO) specifically aims at more comprehensive and reliable support of the human operators on-board and ashore. However, autonomous unmanned ships remote controlled or even autonomously navigating are expected to come soon. In this paper, selected operational aspects of maritime traffic merging conventional and unmanned remote controlled ships in coastal areas are discussed. Furthermore, some preliminary results of experimental simulation studies into a future scenario of maritime traffic are presented and preliminary conclusions in respect to job profiling and training requirements are discussed.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 3; 495-501
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Operations of maritime autonomous surface ships
Autorzy:
Pietrzykowski, J.
Pietrzykowski, Z.
Hajduk, J.
Powiązania:
https://bibliotekanauki.pl/articles/117150.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Maritime Autonomous Surface Ships (MASS)
autonomous ship
MASS technology
MASS autonomy
MASS safety
Advanced Autonomous Waterborne Application (AAWA)
Sea Traffic Management (STM)
situational awareness at sea
Opis:
Advancing technologies create unique opportunities for constructing autonomous ships, which, in turn, raise growing interest of the maritime industry, shipowners in particular. These authors have analyzed actions taken in this field and some aspects related to the operations of maritime autonomous surface ships (MASS). The presented case study refers to a ship with a skeleton crew on a deep sea voyage, where the ship’s autonomy is narrowed to the fourth stage of transport task – sea voyage and its navigational aspect.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 4; 725-733
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Preliminary results of a system-theoretic assessment of maritime autonomous surface ships’ safety
Autorzy:
Wróbel, K.
Krata, P.
Montewka, J.
Powiązania:
https://bibliotekanauki.pl/articles/117567.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Maritime Autonomous Surface Ships (MASS)
autonomous ship
MUNIN project
Advanced Autonomous Waterborne Application (AAWA)
System-Theoretic Process Analysis (STPA)
System-Theoretic Accident Model and Process (STAMP)
unmanned shipping system
safety at sea
Opis:
While a system-theoretic approach to the safety analysis of innovative socio-technical systems gains a growing acceptance among academia, safety issues of Maritime Autonomous Surface Ships (MASS) remain largely unexplored. Therefore, we applied a System-Theoretic Process Analysis to develop and analyze a preliminary model of the unmanned shipping system in order to elaborate safety recommendations for future developers of the actual system. Results indicate that certain advancements shall be undertaken in relation to MASS’ software solutions in particular.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 4; 717-723
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies