Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "kogeneracja energii" wg kryterium: Temat


Tytuł:
Analiza rentowności technologii skojarzonego wytwarzania energii elektrycznej i ciepła w nowym systemie wsparcia dla kogeneracji
Autorzy:
Dusiło, Marcin
Bujalski, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/89581.pdf
Data publikacji:
2019
Wydawca:
Nowa Energia
Tematy:
ciepłownictwo
energia elektryczna
wytwarzanie energii
rentowność
kogeneracja
heating
electrical energy
energy production
profitability
cogeneration
Źródło:
Nowa Energia; 2019, 2; 21-26
1899-0886
Pojawia się w:
Nowa Energia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aspekty wykorzystania kogeneracji i generacji rozproszonej opartej na odnawialnych źródłach energii
Renewable energy sources and cogeneration costs in aspects of distributed generation
Autorzy:
Zuchora, K.
Powiązania:
https://bibliotekanauki.pl/articles/268684.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
cogeneration
renewable energy sources
energy costs
kogeneracja
odnawialne źródła energii
koszty energii
Opis:
Referat prezentuje zgromadzone doświadczenia i wnioski na temat odnawialnych źródeł energii i generacji rozproszonej funkcjonującej w strukturach scentralizowanego systemu elektroenergetycznego. Wnioski wypracowane z udziałem kogeneracji i źródeł energii różnego pochodzenia uwzględniają konieczność przystosowania systemów generacji rozproszonej do funkcjonowania w elektroenergetycznym systemie scentralizowanym. Referat uwzględnia perspektywy funkcjonowania energetyki prosumenckiej i akcentuje sposób zagospodarowania systemów mikroenergetycznych w scentralizowanym systemie elektroenergetycznym. Skojarzone wytwarzanie energii, przy współudziale źródeł odnawialnych, jest opiniowane w poszczególnych rozdziałach referatu a zauważone problemy i możliwe rozwiązania powstałe w wielowymiarowej energetyce są w publikacji dyskutowane.
Author in paper chapters notes that the restructuring of conventional energy power system into a distributed energy system may seek to achieve the effect of increasing number of energy produced from renewable sources and improve efficiency in the power energy infrastructure. The paper presents the collected experience and conclusions on renewable energy and distributed generation functioning in the structures of a centralized energy power system. Can be assumed that some of the aspects of distributed generation noted in the article can be practically used. Reached conclusions include the need to reorganize the conventional energy system with the participation of cogeneration and energy sources of different origin in order to adapt them to the idea of distributed generation. On the basis of the research author notes that distributed energy can be installed in the available infrastructures of power system, and can work in combination due to reduced power transmission losses and achieve greater efficiency in compared to conventional centralized power system. The paper takes into account the perspective of the functioning the prosumer energy system and accentuates the manner of management micro energy systems in conventional power system. The author notes that as a consequence of unplanned aftermath in the energy system components belonging to the structure of the system can be transformed and their effects in stages of restructuring, can be difficult to predict. Combined production of energy with the help of renewable energy is giving opinions in the individual sections of the paper and noticed problems and possible solutions resulting in a multidimensional synergy of energy are discussed in the publication. In this study ways of working and functions of renewable energy in conventional energy systems operating in cogeneration can be interpreted as aspects of distributed energy.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2017, 53; 151-154
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dlaczego ORC jest najlepszym rozwiązaniem do wykorzystania energii odpadowej w cementowni
Why ORC is the best option to recover the waste energy in cement plant
Autorzy:
Duda, J.
Powiązania:
https://bibliotekanauki.pl/articles/392400.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Ceramiki i Materiałów Budowlanych
Tematy:
produkcja klinkieru
piec obrotowy
ciepło odpadowe
odzysk ciepła
wytwarzanie energii
energia elektryczna
kogeneracja
metoda OCR
clinker production
rotary kiln
waste heat
heat recovery
energy manufacturing
electrical energy
cogeneration
ORC method
Opis:
Tradycyjne metody wykorzystania ciepła odpadowego z pieca obrotowego w procesie suszenia surowców i węgla są już niewystarczające. W związku z tym poszukuje się innych sposobów wykorzystania tej energii odpadowej. Metodą, która na świecie jest najczęściej stosowana, jest – na wzór typowej kogeneracji w energetyce – skojarzenie pieca obrotowego z układem do wytwarzania energii elektrycznej. Na przykładzie stosowanych rozwiązań w światowym przemyśle cementowym w artykule uzasadniono wybór metody opartej na układzie ORC.
Traditional methods of utilization of waste heat from the rotary kilns for drying of raw materials and coal are no longer sufficient. Therefore, other ways of waste energy recovering have been explored. The most common method applying in the world wide is electricity generation associated with rotary kiln system, similar to a typical cogeneration in power industry. In the paper, on the example of solutions in the used world cement industry, the choice of method based on the ORC system been justified.
Źródło:
Prace Instytutu Ceramiki i Materiałów Budowlanych; 2012, R. 5, nr 9, 9; 32-43
1899-3230
Pojawia się w:
Prace Instytutu Ceramiki i Materiałów Budowlanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Energetyczne wykorzystanie biogazu do produkcji energii elektrycznej i ciepła w skojarzeniu w średniej wielkości oczyszczalni ścieków. Część 1. Analiza techniczna
Biogas energy use for the production of electricity and heat in combination in medium sewage treatment plant. Part 1. Technical analysis
Autorzy:
Szul, T.
Powiązania:
https://bibliotekanauki.pl/articles/883547.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
oczyszczalnie sciekow
osady sciekowe
fermentacja
produkcja biogazu
biogaz
wykorzystanie energetyczne
produkcja energii
produkcja ciepla
kogeneracja
uklady kogeneracyjne
analiza techniczna
bilans energetyczny
Opis:
Przeprowadzono analizę zużycia energii elektrycznej i ciepła oraz profil produkcji biogazu otrzymanego w procesie fermentacji osadów ściekowych w oczyszczalni ścieków w Wadowicach. Na tej podstawie dobrano moduł kogeneracyjny o mocy elektrycznej 192 kW oraz 214 kW mocy cieplnej. Poziom rocznej produkcji energii z układu kogeneracyjnego wynoszący 1060 MWh energii elektrycznej i 4246 GJ ciepła jest determinowany dostępną ilością biogazu w oczyszczalni, która wynosi 547 tys. m . Pozwoli to pokryć blisko 90% zużycia energii elektrycznej oraz 52% potrzeb cieplnych oczyszczalni.
An analysis of electricity and heat consumption and biogas production profile obtained by the fermentation of sewage sludge in sewage treatment plant in Wadowice has been carried out. On this basis, the cogeneration unit of electrical power 192 kW and 214 kW thermal power has been chosen. The level of annual energy production from cogeneration system amounting to 1,060MWh of electricity and 4246 GJ of heat is determined by the available quantity of biogas in the wastewater, which amounts to 547 thousand. m . This will allow to satisfy 90% of electricity consumption and 52% of heat demand in the wastewater treatment plant.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2012, 01
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Energetyczne wykorzystanie biogazu do produkcji energii elektrycznej i ciepła w skojarzeniu w średniej wielkości oczyszczalni ścieków. Część 2. Analiza ekonomiczna
Biogas energy use for the production of electricity and heat in combination in medium sewage treatment plant. Part 2. Economic analysis
Autorzy:
Szul, T.
Powiązania:
https://bibliotekanauki.pl/articles/884236.pdf
Data publikacji:
2012
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
oczyszczalnie sciekow
osady sciekowe
produkcja biogazu
biogaz
wykorzystanie energetyczne
produkcja energii
produkcja ciepla
kogeneracja
uklady kogeneracyjne
analiza ekonomiczna
Opis:
Przeprowadzono analizę efektywności ekonomicznej projektu inwestycyjnego polegającego na implementacji układu kogeneracyjnego, pracującego na biogazie produkowanym z osadów w oczyszczalni ścieków. Pomimo wysokich kosztów inwestycyjnych, wynoszących około 1,4 mln zł, własna produkcja energii elektrycznej i ciepła może generować roczne przychody dla zakładu na poziomie 418 tys. zł. Nakłady poniesione na zakup i uruchomienie systemu zwrócą się po około 3 latach.
Cost-effectiveness analysis of an investment project involving the implementation of the cogeneration system running on biogas from waste-water treatment plants was carried out. Despite the high investment costs amounting to approximately 1.4 million. PLN, own production of electricity and heat can generate annual revenues for the facility at 418 thousand PLN. Expenditures incurred in purchasing and commissioning of the system will pay off after about 3 years.
Źródło:
Technika Rolnicza Ogrodnicza Leśna; 2012, 02
1732-1719
2719-4221
Pojawia się w:
Technika Rolnicza Ogrodnicza Leśna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Energetyka przyszłości Centrum Energetyki AGH
Autorzy:
Nowak, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/89454.pdf
Data publikacji:
2018
Wydawca:
Nowa Energia
Tematy:
energetyka rozproszona
węgiel kamienny
odnawialne źródła energii
kogeneracja
distributed energy
coal
renewable energy sources
cogeneration
Opis:
Czytając różne opracowania można zauważyć, że ewidentnie maleje rola węgla we współczesnej energetyce, w której trwa obecnie rewolucja. Rewolucja ta dotyczy przede wszystkim obniżania kosztów wytwarzania energii z OZE, ograniczenia oddziaływania energetyki na zdrowie, innej roli węgla oraz nowych modeli biznesowych. Możemy dzisiaj dyskutować co zastąpi źródła węglowe, może będzie to energetyka rozproszona i prosumencka, wysokosprawna kogeneracja, albo energetyka jądrowa?
Źródło:
Nowa Energia; 2018, 1; 18-21
1899-0886
Pojawia się w:
Nowa Energia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Environmental and economic assessment of a biomass-based cogeneration plant: Polish case study
Analiza ekologiczna i ekonomiczna układu skojarzonego zasilanego biomasą: studium przypadku dla Polski
Autorzy:
Mateusz, Świerzewski
Paweł, Gładysz
Powiązania:
https://bibliotekanauki.pl/articles/461263.pdf
Data publikacji:
2017-12
Wydawca:
Mazowieckie Biuro Planowania Regionalnego w Warszawie
Tematy:
biomasa
skojarzone wytwarzanie ciepła i energii elektrycznej
kogeneracja
miejska sieć ciepłownicza
współczynnik udziału skojarzenia
biomass
combined heat and power generation
cogeneration
district heating system
coefficient of the share of cogeneration
Opis:
The goal of the paper is to presents the results of the energy, economic and environmental assessment of biomassfired combined heat and power (BCHP) units cooperating with the district heating system. The mathematical models of both considered BCHP units (with back-pressure and extraction-condensing turbines) have been elaborated and validated with the data from commercially available CHP units. The results of this study prove that BCHP units can be a good option for the Polish energy sector, both from an environmental and energy point of view. The economic analysis showed that the analysed BCHP units could be profitable, but the are several factors, like prices of guarantees of origin for electricity producted from renewable energy sources, that strongly affect the results.
W artykule zaprezentowano wyniki analizy energetycznej, ekonomicznej oraz ekologicznej elektrociepłowni pracującej w miejskim systemie ciepłowniczym. Modele matematyczne rozważanych wariantów elektrociepłowni (z turbiną przeciwprężną oraz turbiną kondensacyjną) zostały opracowane i zweryfikowane na podstawie dostępnych danych z jednostek kogeneracyjnych. Otrzymane wyniki wskazują, że biomasowe układy kogeneracyjne mogą stanowić dobrą alternatywę dla polskiego sektora energetycznego, zarówno z ekologicznego jak i energetycznego punktu widzenia. Analiza ekonomiczna wskazała, że analizowane warianty elektrociepłowni mogą być opłacalne lecz takie czynniki jak cena za świadectwa pochodzenia produkcji energii ze źródeł odnawialnych mogą znacząco wpłynąć na uzyskane wyniki.
Źródło:
MAZOWSZE Studia Regionalne; 2017, 22; 97-114
1689-4774
Pojawia się w:
MAZOWSZE Studia Regionalne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of the use of cogeneration bonus as a support mechanism for the transformation of the heating system in Poland in 2019-2020
Ocena wykorzystania premii kogeneracyjnej jako mechanizmu wsparcia transformacji systemu ciepłowniczego w Polsce w latach 2019-2020
Autorzy:
Adamik, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/2069799.pdf
Data publikacji:
2022
Wydawca:
Fundacja Ekonomistów Środowiska i Zasobów Naturalnych
Tematy:
CHP
cogeneration bonus
RSE
support mechanisms
kogeneracja
premia kogeneracyjna
odnawialne źródła energii
mechanizmy wsparcia
Opis:
The development of cogeneration is an element of the transformation of the heating sector in Poland. Consequently, the state applies various subsidy mechanisms. One of them is the cogeneration bonus, designed to stimulate investment in high-efficiency cogeneration. It subsidies the generated electricity to entities that won the cogeneration bonus auction and then made investments in new cogeneration engines. This paper aims to evaluate the use of the cogeneration bonus. The thesis assumes that the cogeneration bonus, despite its supportive nature, is not used by investors. This is evidenced by the low level of contracting of subsidies available in individual auctions. To achieve the study’s objective, the ratio of contracted subsidies in the cogeneration bonus auctions to the volume available for contracting in individual auctions was analysed. The author has studied the auction results for cogeneration bonuses, sector reports, CO2 emission price, types of fuel, and aggregated financial data of heat plants in Poland. The research has an implication character, confirming the lack of adequacy of cogeneration bonuses to the financial situation of potential investors.
Rozwój kogeneracji stanowi element transformacji sektora ciepłowniczego w Polsce. W związku z tym państwo stosuje różne mechanizmy dofinansowań. Jednym z nich jest premia kogeneracyjna, która ma na celu stymulację inwestycji w wysokosprawną kogenerację. Polega ona na dofinansowaniu wytworzonej energii elektrycznej podmiotom, które wygrały aukcję na premię kogeneracyjną, a następnie dokonały inwestycji w nowe silniki kogeneracyjne. Celem niniejszego artykułu jest ocena wykorzystania premii kogeneracyjnej. Teza zakłada, że premia kogeneracyjna, mimo jej pomocowego charakteru, nie jest wykorzystywana przez inwestorów. Świadczy o tym niski stopień kontraktacji dopłat dostępnych w poszczególnych aukcjach. Dla realizacji celu badania przeanalizowano stosunek wolumenu zakontraktowanych dopłat w ramach aukcji na premię kogeneracyjną do wolumenu dostępnego do zakontraktowania w poszczególnych aukcjach. W ramach badania źródeł wtórnych autor dokonał analizy: wyników aukcji na premię kogeneracyjną, raportów sektorowych, ceny emisji CO2, rodzajów paliw, jak również zagregowanych danych finansowych ciepłowni działających w Polsce. Badania mają charakter implikacyjny, potwierdzają brak adekwatności premii kogeneracyjnej do sytuacji finansowej potencjalnych inwestorów.
Źródło:
Ekonomia i Środowisko; 2022, 1; 39--52
0867-8898
Pojawia się w:
Ekonomia i Środowisko
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geotermia a CCS i CCU
Geothermal energy versus CCS and CCU
Autorzy:
Wójcicki, A.
Powiązania:
https://bibliotekanauki.pl/articles/2062698.pdf
Data publikacji:
2012
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
CCS
CCU
geotermia
HDR
sekwestracja CO2
poziomy solankowe
kogeneracja energii
geothermal energy
CO2 sequestration
saline aquifers
energy cogeneration
Opis:
Problem potencjalnego konfliktu interesów pomiędzy geologicznym składowaniem CO2 w poziomach solankowych a geotermią niskotemperaturową jest często podnoszony przez przeciwników metody CCS (Carbon Capture and Storage – czyli wychwyt i geologiczne składowanie CO2) zarówno w Polsce, jak i w innych krajach Europy o podobnych warunkach geologicznych. Jak wiadomo, formacje skał osadowych występujące w obrębie basenu permo-mezozoicznego obejmującego północne Niemcy, Danię, Holandię, Morze Północne, wschodnią część Anglii oraz ponad połowę terytorium Polski zawierają wody złożowe o rozmaitym zasoleniu. Wbrew oponentom metody CCS warto wskazać, że procesy towarzyszące oddziaływaniom wtłaczanego CO2 z górotworem i wodami solankowymi można wykorzystać jednocześnie do obu celów – sekwestracji i skojarzonej produkcji ekologicznej energii (kogeneracji). Reasumując, obecnie możliwe jest połączenie CCS i CCU (Carbon Capture and Utility, czyli wychwyt CO2 oraz jego utylizacja) i geotermii, przez co można redukować emisję dwutlenku węgla i przy okazji w opłacalny sposób produkować ciepło i/lub energię elektryczną. Pierwszą z takich możliwości jest wykorzystanie CO2 w zamkniętych, niekonwencjonalnych systemach geotermalnych typu HDR (Hot Dry Rock). W przypadku HDR dokonujemy szczelinowania, aby sztucznie polepszyć właściwości zbiornikowe skał na głębokościach minimum 3 km i osiągnąć temperaturę minimum 95–100°C, wystarczającą do produkcji i ciepła i energii elektrycznej. Połączenie geotermii z CCU oznacza tu po prostu że zamiast wody zatłaczamy CO2 w obiegu zamkniętym. Około 10% zatłoczonego gazu jest przy tym „tracona", czyli pozostaje na trwałe w górotworze, co stanowi efekt CCS. Oczywiście, nie są to ilości na ogół wielkie w porównaniu z konwencjonalną sekwestracją, ale w przyjętych koncepcjach redukcji emisji CO2 metody utylizacji tego gazu (CCU – Carbon Capture and Utility) są szczególnie cenne i pożądane. Wykorzystanie CO2 zamiast wody jako medium przenoszące ciepło ogromnie przy tym podnosi efektywność energetyczną HDR, co stanowi w tym przypadku kluczowy zysk ekonomiczny i ekologiczny. Druga koncepcja wykorzystuje skały osadowe o dobrych właściwościach zbiornikowych, zawierające solanki, które są na ogół mniej przydatne dla geotermii, z uwagi na wysoką korozyjność i przeciętne na ogół (zwłaszcza w naszym kraju) parametry temperaturowe. Do poziomu solankowego zatłaczany jest CO2, który na głębokości minimum 800 m występuje w fazie zbliżonej do ciekłej, lecz o gęstości niższej od solanki, stąd utrzymuje się nad nią w postaci poduszki. Przy założeniu kogeneracji energii, CO2 jest zatłaczany do solanki, przy czym jego większa część pozostaje w górotworze (sekwestracja), a niewielka część cyrkuluje w obiegu zamkniętym, oddając ciepło na wymienniku, bądź produkując energię elektryczną w turbinie. Sens ekonomiczny tej koncepcji zawiera się w fakcie, że dwutlenek węgla może w tych warunkach, w temperaturze kilkudziesięciu stopni Celsjusza plus panującej na tych głębokościach, oddać parokrotnie więcej ciepła/energii, niż zasolona woda wykorzystywana w tradycyjnych układach zamkniętych głębokiej geotermii.
The issue of potential conflict of interests between CO2 geological storage in saline aquifers (CCS – Carbon Capture and Storage) and low-enthalpy geothermal energy is often raised by opponents of the CCS in Poland and other European countries of similar geological conditions. However, contrary to those opponents, processes accompanying CO2 injection into deep saline aquifers can be simultaneously used for both sequestration and associated production of clean energy. Sedimentary formations occurring in the Permian-Mesozoic Basin, covering the Northern Germany, Denmark, the Netherlands North Sea, eastern England and more than a half of the territory of Poland contain deep waters of variable salinity. It is possible to combine geothermal and CCS, both in order to reduce carbon dioxide emissions and for cost-efficient heat and/or electricity generation. The first concept is the use of CO2 in closed, unconventional geothermal systems (HDR – Hot Dry Rock). In case of HDR fracturing is carried out in order to enhance reservoir properties of rocks at depth of at least 3 km, reaching a temperature of minimum 95–100°C, sufficient for heat and electricity generation. This method combines the geothermal energy and CO2 injection instead of water in a closed loop. Therefore, this method should be classified mostly as CCU, subordinately as CCS. Although it does not neutralize huge amounts of CO2 in comparison with conventional geological storage (only about 10% of injected gas is ultimately stored in the host rock), the CCU method is much desired and produces geothermal energy with much better efficiency than the classical geothermal loop using water as a medium transporting the heat – which is the main economical and ecological advantage of this method. The second concept uses sedimentary rocks of good reservoir properties, containing saline aquifers, usually less suitable for geothermal because of high corrosivity and generally weak thermal properties (at least in Poland). CO2 is injected into the saline aquifer, and appears at depth of minimum 800 m in a phase similar to a liquid, but of density lower than brine, so it remains on top as a plume. If most of the injected CO2 remains in the aquifer (i.e. it is sequestered), part of it is re-circulated in a closed loop for the heat exchange or electricity generation in a turbine. At the depth of more than 800 m, in the temperature of tens of C degrees plus, the carbon dioxide transmits the heat/energy stream several times more efficiently than the water/brine medium, which makes economic sense of such an approach.
Źródło:
Biuletyn Państwowego Instytutu Geologicznego; 2012, 448 (1); 239--246
0867-6143
Pojawia się w:
Biuletyn Państwowego Instytutu Geologicznego
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Green Power to Heat (GP2H) - techniczne możliwości wykorzystania energii elektrycznej z OZE do poprawy ekonomiki przedsiębiorstwa ciepłowniczego
Autorzy:
Kowalak, Tomasz
Wiśniewski, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/89393.pdf
Data publikacji:
2019
Wydawca:
Nowa Energia
Tematy:
ciepłownictwo
kogeneracja
energia elektryczna
odnawialne źródła energii
przedsiębiorstwo ciepłownicze
heating
cogeneration
electricity
renewable energy sources
heating company
Opis:
Systemy ciepłownicze stoją wobec perspektywy wzrostu kosztów prowadzonej działalności, na który składają się: koszty węgla - w coraz większej skali importowanego, kupowanego po cenach istotnie wyższych niż ceny miału dla elektroenergetyki zawodowej, koszty pozwoleń na emisję CO2 (rys. 1), koszty wykorzystania wody, koszty energii elektrycznej zużywanej na potrzeby wytwarzania ciepła i utrzymania systemu ciepłowniczego, koszty płac oraz barier, jakim podlegają ceny ciepła, nie pozwalających przenieść na klientów pełnych skutków wzrostu ww. kosztów.
Źródło:
Nowa Energia; 2019, 3; 28-33
1899-0886
Pojawia się w:
Nowa Energia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kogeneracja biogazowa: potencjał i dobre przykłady
Autorzy:
Lewicki, Andrzej
Dach, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/1841857.pdf
Data publikacji:
2021
Wydawca:
Nowa Energia
Tematy:
kogeneracja biogazowa
energetyka biomasowa
odnawialne źródła energii
biogas cogeneration
biomass energy
renewable energy sources
Opis:
Energetyka biomasowa posiada ogromny potencjał w Polsce - zarówno w kwestii wytwarzania energii elektrycznej i ciepła, jak i w aspekcie redukcji emisji gazów cieplarnianych (CO2, CH4, NOx, itp.). Dotyczy to zwłaszcza sektora biogazowego, który jest szczególnie dedykowany do zagospodarowania odpadów z sektora rolnictwa, przetwórstwa oraz organicznych odpadów komunalnych.
Źródło:
Nowa Energia; 2021, 1; 52-54
1899-0886
Pojawia się w:
Nowa Energia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mechanizmy wsparcia rozwoju wysokosprawnej kogeneracji i OZE oraz wykorzystania energii odpadowej w Polsce i UE
Development support of high efficiency cogeneration, res and waste energy use in Poland and UE
Autorzy:
Buriak, J.
Powiązania:
https://bibliotekanauki.pl/articles/266800.pdf
Data publikacji:
2011
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
wysokosprawna kogeneracja
certyfikaty pochodzenia energii
mikrogeneracja
high efficiency cogeneration
energy certificates
micro-cogeneration
Opis:
Przedstawiono zobowiązania i główne wnioski zawarte w dyrektywach Komisji Europejskiej oraz w krajowych ustawach i rozporządzeniach ministerialnych, dotyczących wdrożenia mechanizmu wsparcia źródeł rozproszonego wytwarzania energii. Skupiono się głównie na wsparciu dla rozwoju wysokosprawnej kogeneracji. Zaprezentowano szanse wynikające dla małych i średnich przedsiębiorstw, działających w branży instalatorskiej i energetycznej, z racji wdrożenia mechanizmów wsparcia kogeneracji i OZE, z uwzględnieniem kontekstu aktów prawnych.
The article describes basic UE (European Union) directives and Polish legal acts devoted to implementation of support mechanism for distributed energy generation. Information is focused on high efficiency cogeneration. Implications for small and medium scale business are presented.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2011, 29; 35-40
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model geometryczny układu kogeneracyjnego opartego na silniku gazowym 1 MW
Geometrical model of cogeneration system based on a 1 MW gas engine
Autorzy:
Chmielewski, A.
Lubikowski, K.
Mączak, J.
Szczurowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/133523.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Naukowe Silników Spalinowych
Tematy:
kogeneracja energii
układ odprowadzania spalin
silnik spalinowy
generator termoelektryczny
cogeneration energy
exhaust system
combustion engine
thermoelectric generator
Opis:
W poprzednim roku w grudniu został przyjęty przez Komisje Europejską nowy budżet programu operacyjnego "Infrastruktura i Środowisko", gdzie dla Polski przewidziane jest blisko 32mld Euro na inwestycje proekologiczne. Program ten skupia się na poprawie atrakcyjności naszego kraju oraz rozwoju efektywnych energetycznie technologii. Szczególnie ważne w tym kontekście stają się układy odzyskiwania energii i zwiększania efektywności transformacji energii przy jednoczesnym zmniejszeniu emisji zanieczyszczeń do środowiska. W dyrektywie europejskiej nr 2009/28/WE z kwietnia 2009 roku określono wymagania stawiane państwom członkowskim UE w sprawie promowania stosowania energii ze źródeł odnawialnych. W artykule Autorzy skupili się na zamodelowaniu geometrycznym układu kogeneracyjnego bazującego na silniku spalinowym zasilanym paliwem produkowanym z wysypiska śmieci. Autorzy zamodelowali geometrycznie układ odzyskiwania energii wykorzystujący ciepło odpadowe silnika (silnik gazowy), przekształcając je na energię elektryczną za pomocą termoelektrycznych generatorów (TEG - ang. thermoelectric generators), wykorzystujących technologię półprzewodnikową. W niniejszej pracy przedstawiono także wyniki badań temperaturowych na powierzchni silnika gazowego oraz układu odprowadzania spalin. Publikacja powstała dzięki finansowaniu z Urzędu Marszałkowskiego Województwa Mazowieckiego.
In the previous year in December has been adopted by the European Commission a new budget for the Operational Programme "The Infrastructure and Environment", where for the Polish intended is close to 32mld Euro for environmental investment. This program focuses on improving the attractiveness of our country and the development of energy efficient technologies. Especially important in this context become the energy recovery systems and increase the efficiency of converting energy with simultaneously reducing emissions of pollutions to the environment. The European Directive 2009/28 / EC of April 2009 set out the requirements for the EU Member States on the case of the promotion of the use of energy from renewable sources. In the article Authors have focused on geometrical modelling of cogeneration system based on internal combustion engine powered by fuel produced from landfill. Authors was realise geometrically model of energy recovery system used waste heat from engine(Gas Engine), transforming them into electrical energy using a thermoelectric generator (TEG - called. Thermoelectric Generators) which use semiconductor technology. The pa-per presents the results of temperature tests on the surface of the gas engine and the exhaust system. This work is the result of the financial support from the Office of Mazovian Voivodeship Marshal.
Źródło:
Combustion Engines; 2015, 54, 3; 570-577
2300-9896
2658-1442
Pojawia się w:
Combustion Engines
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Obieg kogeneracyjny w wodnych kotłach ciepłowniczych
Autorzy:
Ostrowski, Piotr
Pronobis, Marek
Świątkowski, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/986605.pdf
Data publikacji:
2019
Wydawca:
Nowa Energia
Tematy:
kocioł ciepłowniczy
kocioł wodny
kogeneracja
energia elektryczna
wytwarzanie energii elektrycznej
ciepło
wytwarzanie ciepła
heating boiler
water boiler
cogeneration
electricity
electricity generation
heat
heat generation
Opis:
Kogeneracja - wspólne wytwarzanie energii elektrycznej i ciepła przynosi oszczędności w zużyciu paliw pierwotnych. W związku z tym przyczynia się do redukcji emisji szkodliwych substancji do atmosfery (CO2), co również oznacza zmniejszenie kosztów zewnętrznych wytwarzania energii i ciepła. Do tej pory cykle kogeneracyjne nie były stosowane w ciepłowniach wyposażonych w kotły wodne (wodno-rurowe lub płomienicowo-płomieniówkowe). W artykule przedstawiono koncepcję innowacyjnego obiegu kogeneracji, który współpracuje z wodnym kotłem ciepłowniczym lub przemysłowym, a instalacja kogeneracji nie zmienia zatwierdzenia parametrów technicznych kotła i nie ogranicza zakresu jego użytkowania. Przedstawiono opracowane obiegi porównawcze w układach h-s i T-s, pasmowy wykres energii Sankey'a oraz wykresy wybranych wskaźników kogeneracji. Ponadto przedstawiono wskaźniki ekonomiczne kogeneracji dla kotłów wodnych.
Źródło:
Nowa Energia; 2019, 1; 21-28
1899-0886
Pojawia się w:
Nowa Energia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Produkcja energii w źródłach kogeneracyjnych małej mocy z wykorzystaniem technologii zgazowania odpadów pochodzenia komunalnego. Uwarunkowania prawne i ekonomiczne
Energy production in low-power cogeneration systems using the gasification technology of post-municipal waste. The legal and economic conditions
Autorzy:
Primus, A.
Rosik-Dulewska, Cz.
Powiązania:
https://bibliotekanauki.pl/articles/283317.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
zgazowanie odpadów
kogeneracja
energia z odpadów
rynek odpadów
rynek energii
gasification of wastes
cogeneration
energy from waste
waste market
energy market
Opis:
W artykule przedstawiono podstawowe uwarunkowania prawne i ekonomiczne dla możliwości rozwoju i wdrożeń instalacji zgazowania odpadów, produkcji energii elektrycznej i cieplnej w kogeneracji w układach małej mocy opartych na silnikach tłokowych. Wprowadzone w 2010 r. dyrektywą IED (Dyrektywa… 2010) nowe przepisy dotyczące technologii zgazowania odpadów wraz z implementacją do prawa krajowego w 2014 r. ustawą o odpadach (Ustawa… 2014) umożliwiły ich rozwój jako technik wysokosprawnych energetycznie oraz niskoemisyjnych. Stanowią one obecnie interesującą alternatywę dla klasycznych instalacji termicznego przekształcania odpadów opartych na technologii spalania. Kluczowym zagadnieniem dla rozwoju technologii zgazowania jest czystość wytwarzanego syngazu w ujęciu prawnym i technologicznym w szczególności w przypadku jego spalania w silnikach tłokowych. Z uwagi na brak spójnych przepisów dotyczących emisji zanieczyszczeń ze spalania syngazu w silnikach tłokowych zaproponowano możliwości ich interpretacji. W artykule przedstawiono również podstawowe uwarunkowania ekonomiczne i rynkowe w odniesieniu do krajowego modelu gospodarki odpadami. Wprowadzenie modelu gospodarki odpadami opartego na mechaniczno-biologicznym przetwarzaniu odpadów oraz zakazu składowania odpadów na właściwościach paliwowych wygenerowało problem oraz wzrost kosztów ich zagospodarowania. Konsekwencją jest możliwy wzrost rentowności instalacji zgazowania odpadów i produkcji energii w układach kogeneracyjnych małej mocy. Ponadto wskazano i opisano możliwe dostępne źródła przychodów dla takich wdrożeń w skali lokalnej.
The article presents the basic legal and economic conditions for the development and implementation of waste gasification, electricity and heat production in cogeneration in low power systems based on reciprocating motors. The new regulations on waste gasification technologies under the IED, introduced in 2010 and implemented in Polish law in 2014, enabled them to develop as energy efficient and low emission technologies. They are now an interesting alternative to conventional thermal waste incineration plants. The key issue for the development of gasification technology is the purity of the syngas produced in legal and technological terms, particularly when it is combusted in piston engines. Due to the lack of consistent regulations on emissions from the combustion of syngas in piston engines, the possibility of their interpretation was proposed. The article also presents basic economic and market conditions for the national model of waste management. The introduction of the waste management model based on the mechanical and biological treatment of waste and the landfilling ban of calorific waste generated the problem and increased the cost of their disposal. The consequence is the possible increase in the profitability of waste gasification and power generation in low power cogeneration systems. In addition, potential sources of revenue for such local implementations were identified and described.
Źródło:
Polityka Energetyczna; 2017, 20, 3; 79-92
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies