Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "klasyfikator neuronowy" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Stanowisko mocy krążącej jako system pozyskiwania danych testujących dla klasyfikatorów neuronowych
The circulating power test rig as a system of getting data test for the artificial neural network
Autorzy:
Wojnar, G.
Figlus, T.
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/197420.pdf
Data publikacji:
2009
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
moc krążąca
klasyfikator neuronowy
artificial neural network
neural networks
Opis:
W opracowaniu przedstawiono metodologię wykorzystania stanowiska mocy krążącej jako bazy w pozyskaniu danych do walidacji klasyfikatorów neuronowych. W artykule przedstawiono metodologię pomiarów i wstępnej obróbki sygnałów zmierzonych na stanowisku FZG.
The work presents methodology of using circulating power test rig as a base of getting data set for artificial neural networks. The results of measurement used to test a neural classification system. The following paper presents a method of measuring and signal processing.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2009, 65; 119-124
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowe klasyfikatory cech sygnałów w diagnostyce uszkodzeń wirnika silnika indukcyjnego
Neural classifiers of fault symptoms in induction machinery rotor fault diagnosis
Autorzy:
Sobolewski, A.
Powiązania:
https://bibliotekanauki.pl/articles/328340.pdf
Data publikacji:
2005
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
MCSA
klasyfikator neuronowy
diagnostyka
detekcja uszkodzeń
neural classifier
diagnostics
fault detection
Opis:
W artykule zostaną poruszone zagadnienia związane z diagnostyką uszkodzeń silnika indukcyjnego dokonywanej za pomocą metody MCSA (Motor Current Signature Analysis. Wiele publikacji na ten temat wskazuje na pojawianie się tzw. częstotliwości poślizgowych wokół pierwszej, piątej i siódmej harmonicznej prądu stojana dla obciążeń powyżej połowy znamionowego. W niniejszym artykule zostanie przedstawiona sieć neuronowa LVQ wykorzystywana do rozwiązania problemu klasyfikacyjnego, przetwarzająca zbiór danych otrzymanych na drodze analizy statystycznej wybranych fragmentów spektrum prądu fazowego stojana. Rozwiązanie takie pozwala zautomatyzować proces klasyfikacyjny i uniknąć konieczności wyznaczania prędkości obrotowej.
In this paper problems of fault detection of induction motor by the MCSA (Motor Current Signature Analysis) method are considered. Many of published papers point to lip frequencies that appear around the fist, fifth and seventh harmonic in stator current spectrum for more then half of nominal load. This paper presents the application of the LVQ neural network, employed to solve the classification problem based on a set of input data collected as chosen parts of current spectrum being statistically analyzed. The application helps to make the classification procedure automated and avoids necessity of rotor speed measurement.
Źródło:
Diagnostyka; 2005, 35; 27-30
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A class of neuro-computational methods for assamese fricative classification
Autorzy:
Patgiri, C.
Sarma, M.
Sarma, K. K.
Powiązania:
https://bibliotekanauki.pl/articles/91763.pdf
Data publikacji:
2015
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
neuro-computational classifier
fricative phonemes
Assamese language
Recurrent Neural Network
RNN
neuro fuzzy classifier
linear prediction cepstral coefficients
LPCC
self-organizing map
SOM
adaptive neuro-fuzzy inference system
ANFIS
klasyfikator neuronowy
klasyfikator neuronowo rozmyty
sieć Kohonena
Opis:
In this work, a class of neuro-computational classifiers are used for classification of fricative phonemes of Assamese language. Initially, a Recurrent Neural Network (RNN) based classifier is used for classification. Later, another neuro fuzzy classifier is used for classification. We have used two different feature sets for the work, one using the specific acoustic-phonetic characteristics and another temporal attributes using linear prediction cepstral coefficients (LPCC) and a Self Organizing Map (SOM). Here, we present the experimental details and performance difference obtained by replacing the RNN based classifier with an adaptive neuro fuzzy inference system (ANFIS) based block for both the feature sets to recognize Assamese fricative sounds.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2015, 5, 1; 59-70
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnostyka analogowych filtrów wielosekcyjnych oparta na klasyfikatorach neuronowych z dwucentrowymi funkcjami bazowymi
Fault diagnosis of analog multi-stage filters based on two-center basis function neural classifiers
Autorzy:
Kowalewski, M.
Czaja, Z.
Powiązania:
https://bibliotekanauki.pl/articles/156722.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
klasyfikator neuronowy
mikrokontroler
układ analogowy
neural classifier
microcontroller
analog circuit
Opis:
Przedmiotem artykułu jest zastosowanie klasyfikatora z dwucentrowymi funkcjami bazowymi do lokalizacji uszkodzeń w wielosekcyjnych torach analogowych elektronicznych systemów wbudowanych sterowanych mikrokontrolerem. Przedstawiono szczegóły procedury pomiarowej oraz metody detekcji i lokalizacji uszkodzeń toru analogowego z wykorzystaniem klasyfikatora DB zaimplementowanego w postaci algorytmicznej w kodzie programu mikrokontrolera. Omówiono konstrukcję klasyfikatora DB oraz metodę wyznaczania jego parametrów na przykładzie wielosekcyjnego toru analogowego złożonego z trzech filtrów dolnoprzepustowych 2-go rzędu o strukturze Sallena-Keya.
The aim of the paper is usage of a classifier with Two-Center Basis Functions for localization of faults in multi-stage filters implemented in electronic embedded systems controlled with microcontrollers. The main idea of self-testing approach is development of a BIST with a set of analog switches located between individual stages of a tested filter. Thanks to multiplexers used in general purpose input/output lines in microcontrollers, a single line can be the output of an excitation signal (eg. a square impulse) or the input of a measured signal applied to an analog-to-digital converter through the analog multiplexer. Details of the measurement procedure as well methods of detection and localization of faults in analog circuits with use of the TCBF classifier implemented in the microcontroller program code are discussed. The construction and a method of obtaining parameters of the TCBF classifier on an exemplary filter consisting of three 2nd order low-pass filters based on the Sallen-Key topology are presented.
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 9, 9; 733-736
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault detection in electrical drive by means of artificial neural networks
Detekcja uszkodzeń w silniku elektrycznym przy pomocy sztucznych sieci neuronowych
Autorzy:
Głowacki, G.
Patan, K.
Powiązania:
https://bibliotekanauki.pl/articles/327210.pdf
Data publikacji:
2006
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
detekcja uszkodzeń
sieć neuronowa
klasyfikator neuronowy
modelowanie
silnik elektryczny
fault detection
neural network
neural classifier
modeling
electrical drive
Opis:
The paper deals with problem model-based of fault detection electrical drive by using neural networks. The multilayer perceptron with tapped delay lines has been applied to model the diagnosed process at the nominal operation conditions. In turn, decision about faults has been performed using simple MultiLayer Feedforward Network (MFN). The electrical drive under consideration (AMIRA DR300) works in the closed loop and is controlled by PID controller. This laboratory electrical drive renders it positive to simulate a several faulty scenarios. In this way the proposed fault detection scheme can be tested on a number of faulty conditions.
Artykuł przedstawia problem detekcji uszkodzeń w silniku elektrycznym przy pomocy sieci neuronowych. Do zamodelowania diagnozowanego obiektu pracującego w warunkach normalnych użyto sieci jednokierunkowych z liniami opóźniającymi. Następnie, jako blok decyzyjny o wystąpieniu uszkodzeń zastosowano zwykłe jednokierunkowe sieci wielowarstwowe. Do przeprowadzenia badań wykorzystano silnik prądu stałego firmy AMIRA (DR300). Silnik pracuje w układzie zamkniętym z regulatorem PID i umożliwia symulację pewnych scenariuszy uszkodzeń. Dzięki temu możliwe jest przetestowanie zaproponowanego schematu detekcji uszkodzeń na przykładzie wadliwych warunków pracy obiektu.
Źródło:
Diagnostyka; 2006, 2(38); 7-10
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozpoznawanie obrazów z wykorzystaniem neuronowego klasyfikatora NBV
Pattern recognition using NBV neural classifier
Autorzy:
Dybała, J.
Powiązania:
https://bibliotekanauki.pl/articles/327664.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
rozpoznawanie obrazów
sztuczna sieć neuronowa
klasyfikator neuronowy
pattern recognition
artificial neural network
neural classifier
Opis:
W artykule przedstawiono neuronowy klasyfikator NBV o konstrukcji inspirowanej strukturą sieci neuronowej CP (ang. Counter Propagation), który wykorzystuje koncepcję stosowaną w klasyfikacji minimalnoodległościowej, a w swym działaniu nawiązuje do idei funkcjonowania klasyfikatorów SVM (ang. Support Vector Machine).
The article presents the NBV neural classifier whose structure has been inspired by the structure of CP (Counter Propagation) neural network, which uses the methods applied in the minimum-distance classification, while in its operation it draws on the idea of functioning of SVM (Support Vector Machines) classifiers.
Źródło:
Diagnostyka; 2009, 3(51); 105-112
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies