Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "klasyfikacja spektralna" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Analiza porównawcza rozwoju sektora bankowo-kredytowego w krajach UE z wykorzystaniem metod taksonomicznych
Autorzy:
Pisula, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/584155.pdf
Data publikacji:
2017
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
sektor bankowo-kredytowy
analiza skupień
klasyfikacja spektralna
uogólniona miara odległości GDM
ranking
Opis:
Sektor bankowo-kredytowy w sytuacji pojawiających się zawirowań i kryzysów finansowych jest szczególnie wrażliwy na ryzyko występowania licznych niekorzystnych zjawisk. Celem artykułu jest uzyskanie odpowiedzi na pytania dotyczące stopnia podobieństwa rozwoju sektora bankowo-kredytowego w Polsce w porównaniu z innymi krajami UE oraz zbadanie, które kraje charakteryzują się najlepszym poziomem jego rozwoju. Z wykorzystaniem metod taksonomicznych wyodrębniono skupienia krajów podobnych pod względem poziomu rozwoju sektora bankowo-kredytowego i przeanalizowano zmiany w strukturze skupień krajów podobnych, które nastąpiły w dobie kryzysu finansowego (rok 2014) w stosunku do okresu przed kryzysem (rok 2008). Wyznaczono ranking krajów UE ze względu na poziom rozwoju sektora bankowo-kredytowego w obu porównywanych okresach. Zbadano, które kraje są najlepsze w rankingu rozwoju, a także porównano pozycję Polski w stosunku do krajów najlepszych oraz pozostałych krajów Europy Środkowo-Wschodniej.
Źródło:
Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu; 2017, 469; 140-148
1899-3192
Pojawia się w:
Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wielomodelowa klasyfikacja spektralna danych symbolicznych
Autorzy:
Pełka, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/584409.pdf
Data publikacji:
2017
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
klasyfikacja wielomodelowa
klasyfikacja spektralna
dane symboliczne
Opis:
Klasyfikacja spektralna, którą zaproponowali Ng, Jordan i Weiss [ 2002], jest nie tyle nową metodą klasyfikacji, ile nowym podejściem do przygotowywania danych na potrzeby klasyfikacji, która wykorzystuje ideę dekompozycji spektralnej macierzy danych. Głównym celem artykułu jest zastosowanie klasyfikacji spektralnej na potrzeby podejścia wielomodelowego w analizie skupień danych symbolicznych oraz przeprowadzenie i analiza symulacji w tym zakresie. Klasyfikacja spektralna może znaleźć zastosowanie zarówno w przygotowaniu danych na potrzeby utworzenia macierzy współwystąpień (co-association matrix), jak i w samej klasyfikacji dokonywanej na podstawie tej macierzy, a także jako metoda przygotowywania danych na potrzeby adaptacji metody boosting w klasyfikacji. W części empirycznej artykułu zaprezentowano i zinterpretowano wyniki klasyfikacji wielomodelowej z zastosowaniem klasyfikacji spektralnej zarówno do przygotowania danych wejściowych, jak i samej klasyfikacji. Wykorzystano tu sztuczne zbiory danych o znanej strukturze klas.
Źródło:
Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu; 2017, 468; 180-187
1899-3192
Pojawia się w:
Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Comparison of Fuzzy Clustering Methods for Symbolic Interval-Valued Data
Porównanie metod klasyfikacji rozmytej dla danych symbolicznych interwałowych
Autorzy:
Pełka, Marcin
Dudek, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1364881.pdf
Data publikacji:
2015-09-30
Wydawca:
Główny Urząd Statystyczny
Tematy:
spectral clustering
fuzzy clustering
fuzzy partition
interval-valued data
symbolic data analysis
klasyfikacja spektralna
klasyfikacja rozmyta
dane symboliczne interwałowe
analiza danych symbolicznych
Opis:
Interval-valued data can find their practical applications in such situations as recording monthly interval temperatures at meteorological stations, daily interval stock prices, etc. The primary objective of the presented paper is to compare three different methods of fuzzy clustering for interval-valued symbolic data, i.e.: fuzzy c-means clustering, adaptive fuzzy c-means clustering and fuzzy k-means clustering with fuzzy spectral clustering. Fuzzy spectral clustering combines both spectral and fuzzy approaches in order to obtain better results (in terms of Rand index for fuzzy clustering). The conducted simulation studies with artificial and real data sets confirm both higher usefulness and more stable results of fuzzy spectral clustering method, as compared to other existing fuzzy clustering methods for symbolic interval-valued data, when dealing with data featuring different cluster structures, noisy variables and/or outliers.
Dane symboliczne interwałowe mogą znaleźć zastosowanie w wielu sytuacjach – np. w przypadku notowań giełdowych, zmianach kursów walut, itp. Celem artykułu jest porównanie trzech metod klasyfikacji rozmytej dla danych symbolicznych interwałowych – tj. rozmytej klasyfikacji c-średnich, adaptacyjnej rozmytej klasyfikacji c-średnich oraz rozmytej klasyfikacji k-średnich z rozmytą klasyfikacją spektralną. Rozmyta klasyfikacja spektralna stanowi połączenie podejścia spektralnego oraz klasyfikacji rozmytej c-średnich, dzięki czemu możliwe jest otrzymanie lepszych rezultatów (w sensie indeksu Randa dla klasyfikacji rozmytych). Przeprowadzone badania symulacyjne wskazują, że rozmyta klasyfikacja spektralna dla danych symbolicznych pozwala na uzyskanie lepszych wyników niż inne rozmyte metody klasyfikacji dla tego typu danych jeżeli weźmiemy pod uwagę zbiory danych o różnej strukturze klas, która dodatkowo jest zniekształcana przez obserwacje odstające lub zmienne zakłócające.
Źródło:
Przegląd Statystyczny; 2015, 62, 3; 301-319
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja spektralna a skale pomiaru zmiennych
Spectral clustering and measurement scales of variables
Autorzy:
Walesiak, Marek
Powiązania:
https://bibliotekanauki.pl/articles/422850.pdf
Data publikacji:
2012
Wydawca:
Główny Urząd Statystyczny
Tematy:
klasyfikacja spektralna
miary odległości
skale pomiaru
spectral clustering
distance measures
scales of variables
Opis:
W artykule zaproponowano modyfikację metody klasyfikacji spektralnej (zob. Ng, Jordan, Weiss, 2002) umożliwiającą jej zastosowanie w klasyfikacji danych nominalnych, porządko-wych, przedziałowych oraz ilorazowych. W tym celu w procedurze tej metody przy wyzna-czaniu macierzy podobieństwa (affinity matrix) zastosowano funkcję z miarami odległości właściwymi dla danych mierzonych na różnych skalach pomiaru. Takie podejście umożliwia ponadto pośrednie wzmocnienie skali pomiaru zmiennych dla danych niemetrycznych. Zaproponowana metoda klasyfikacji spektralnej może być z powodzeniem stosowana we wszystkich zagadnieniach klasyfikacyjnych, w tym dotyczących pomiaru, analizy i wizualiza-cji preferencji.
In article the proposal of modification of spectral clustering method for nominal, ordinal, interval and ratio data, based on procedure of Ng, Jordan, Weiss (2002), is presented. In con-struction of affinity matrix we implement function with distance measures appropriate for dif-ferent scales of measurement. This approach gives possibility of conversion nonmetric data (nominal, ordinal) into interval data. The proposed method of spectral clustering can be successfully used in all classification problems, including the measurement, analysis and visualization of preferences.
Źródło:
Przegląd Statystyczny; 2012, 59, 1; 13-31
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies