Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "k-means clustering" wg kryterium: Temat


Tytuł:
K-means clustering in textured image: example of lamellar microstructure in titanium alloys
Klasteryzacja k-średnich obrazów teksturowych lamelarnych mikrostruktur stopów tytanu
Autorzy:
Al Darwich, R.
Babout, L.
Strzecha, K.
Powiązania:
https://bibliotekanauki.pl/articles/407821.pdf
Data publikacji:
2017
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
k-means clustering
oriented textured
number of cluster
X-ray tomography
klasteryzacja k-średnich
tekstura zorientowana
liczba klastrów
tomografia rentgenowska
Opis:
This paper presents an implementation of the k-means clustering method, to segment cross sections of X-ray micro tomographic images of lamellar Titanium alloys. It proposes an approach for estimating the optimal number of clusters by analyzing the histogram of the local orientation map of the image and the choice of the cluster centroids used to initialize k-means. This is compared with the classical method considering random coordinates of the clusters.
W artykule przedstawiono implementację metody klasteryzacji k-średnich, do segmentacji dwuwymiarowych rentgenowskich obrazów mikro tomograficznych lamelarnych stopów tytanu. Zaproponowano metody szacowania optymalnej liczbę klastrów oraz wyboru centro idów poprzez analizę histogramu mapy lokalnych kierunków obrazu. Dokonano porównania zaproponowanych metod z losowym doborem początkowego położenia klastrów.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2017, 7, 3; 43-46
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
DSMK-means “density-based split-and-Merge K-means clustering algorithm
Autorzy:
Aldahdooh, R. T.
Ashour, W.
Powiązania:
https://bibliotekanauki.pl/articles/91719.pdf
Data publikacji:
2013
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
clustering
K-means
Density-based Split
Merge K-means clustering Algorithm
DSMK-means
clustering algorithm
Opis:
Clustering is widely used to explore and understand large collections of data. K-means clustering method is one of the most popular approaches due to its ease of use and simplicity to implement. This paper introduces Density-based Split- and -Merge K-means clustering Algorithm (DSMK-means), which is developed to address stability problems of standard K-means clustering algorithm, and to improve the performance of clustering when dealing with datasets that contain clusters with different complex shapes and noise or outliers. Based on a set of many experiments, this paper concluded that developed algorithms “DSMK-means” are more capable of finding high accuracy results compared with other algorithms especially as they can process datasets containing clusters with different shapes, densities, or those with outliers and noise.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2013, 3, 1; 51-71
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Application of Association Rules to Detect the Effects of Vaccinations against Covid-19 in the EU-27. Preliminary Estimates
Stosowanie zasad stowarzyszenia w celu wykrywania skutków szczepionek przeciwko COVID-19 w UE-27. Wstępne szacunki
Autorzy:
Berezka, Kateryna
Powiązania:
https://bibliotekanauki.pl/articles/2196126.pdf
Data publikacji:
2023
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
COVID-19
association rules
k-means clustering
vaccinations
EU country
decision-making
zasady asocjacji
grupowanie k-średnich
szczepienia
kraj UE
podejmowanie decyzji
Opis:
In this research study, the authors obtained the preliminary evaluation of the impact detection of vaccinations against COVID-19 in the EU-27. The empirical basis of the study was the daily number of COVID-19 cases, vaccinations, hospitalisations, and deaths in the EU countries from March 2020 to March 2022. Rules of association were used to identify non-obvious associations between vaccinations against COVID-19 and cases of illness, hospitalisations, and deaths from COVID-19. The obtained results were used to cluster the EU countries by the level of vaccinations against COVID-19, cases of COVID-19, deaths from COVID, and COVID-19 hospitalisations for the EU member states. The K-means clustering method was used for cluster analysis. Hidden dependencies of the number of COVID-19 cases, the number of COVID-19 hospitalisations, and the number of COVID-19 deaths due to the number of vaccinations against COVID-19 by EU countries were revealed. It was established with a high probability that vaccination significantly affects the level of morbidity. For the first time, association rules were obtained, which are preliminary estimates of the relationship between the dynamics of vaccinations against COVID-19 and the dynamics of COVID-19 cases, COVID-19 hospitalisations, and deaths from COVID-19 in the EU. The results can be used to make beneficial decisions, for example, to regulate vaccination policies in individual EU countries, and predict the future consequences of the COVID-19 pandemic.
W tym badaniu autorzy uzyskali wstępną ocenę skuteczności wykrywania szczepień przeciwko COVID-19 w UE-27. Empiryczną podstawą badania jest dzienna liczba zachorowań na COVID-19, szczepień, hospitalizacji i zgonów w krajach UE w okresie od marca 2020 do marca 2022 r. Reguły asocjacji posłużyły do zidentyfikowania nieoczywistych powiązań między szczepieniami przeciwko COVID-19 oraz przypadków zachorowań, hospitalizacji i zgonów z powodu COVID-19. Uzyskane wyniki posłużyły do grupowania krajów UE według poziomu szczepień przeciwko COVID-19, przypadków choroby, zgonów z jej powodu oraz hospitalizacji dla krajów członkowskich UE. Do analizy skupień zastosowano metodę k-średnich grupowania. Ujawniono ukryte zależności liczby zachorowań na COVID-19, liczby hospitalizacji z powodu COVID-19 oraz liczby zgonów z powodu COVID-19 w związku z liczbą szczepień przeciwko COVID-19 w krajach UE. Stwierdzono z dużym prawdopodobieństwem, że szczepienia istotnie wpływają na poziom zachorowalności. Po raz pierwszy uzyskano reguły asocjacyjne, które są wstępnymi szacunkami zależności między dynamiką szczepień przeciwko COVID-19 a dynamiką zachorowań na COVID-19, hospitalizacji z tego powodu i zgonów w krajach UE. Wyniki mogą posłużyć do podejmowania korzystnych decyzji, np. do uregulowania polityki szczepień w poszczególnych krajach UE i przewidywania przyszłych konsekwencji choroby.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2023, 27, 1; 1-16
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Shluková analýza a možnosti jejího využití při hledání typických skupin studentů během realizace výuky formou e-learningu
Cluster analysis and its application in search of typical groups of students in the implementation of teaching through e-learning
Autorzy:
CHRÁSKA, Miroslav
Powiązania:
https://bibliotekanauki.pl/articles/456627.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Rzeszowski
Tematy:
shluková analýza
shlukování metodou k-průměrů
studenti
e-learning
Cluster Analysis
K-Means Clustering
students
Opis:
Příspěvek popisuje výsledky výzkumu, v jehož rámci byly hledány typické skupiny studentů, které se objevují při realizaci výuky formou e-learningu. Využita byla shluková analýza, pomocí níž bylo zjištěno, že se vyskytuje pět charakteristických skupin studentů, které se odlišují zejména svým způsobem komunikace s tutorem.
This paper describes the results of research in which they were searched typical groups of students which appear in the implementation of teaching through e-learning. Cluster analysis was used. Was found that there are five characteristic groups of students, which is different especially in its own way communication with a tutor.
Źródło:
Edukacja-Technika-Informatyka; 2013, 4, 2; 147-153
2080-9069
Pojawia się w:
Edukacja-Technika-Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speaker Model Clustering to Construct Background Models for Speaker Verification
Autorzy:
Dişken, G.
Tüfekci, Z.
Çevik, U.
Powiązania:
https://bibliotekanauki.pl/articles/177299.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Gaussian mixture models
k-means
imposter models
speaker clustering
speaker verification
Opis:
Conventional speaker recognition systems use the Universal Background Model (UBM) as an imposter for all speakers. In this paper, speaker models are clustered to obtain better imposter model representations for speaker verification purpose. First, a UBM is trained, and speaker models are adapted from the UBM. Then, the k-means algorithm with the Euclidean distance measure is applied to the speaker models. The speakers are divided into two, three, four, and five clusters. The resulting cluster centers are used as background models of their respective speakers. Experiments showed that the proposed method consistently produced lower Equal Error Rates (EER) than the conventional UBM approach for 3, 10, and 30 seconds long test utterances, and also for channel mismatch conditions. The proposed method is also compared with the i-vector approach. The three-cluster model achieved the best performance with a 12.4% relative EER reduction in average, compared to the i-vector method. Statistical significance of the results are also given.
Źródło:
Archives of Acoustics; 2017, 42, 1; 127-135
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Clustering of data represented by pairwise comparisons
Autorzy:
Dvoenko, Sergey
Powiązania:
https://bibliotekanauki.pl/articles/2183479.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
clustering
k-means
distance
similarity
Opis:
In this paper, experimental data, given in the form of pairwise comparisons, such as distances or similarities, are considered. Clustering algorithms for processing such data are developed based on the well-known k-means procedure. Relations to factor analysis are shown. The problems of improving clustering quality and of finding the proper number of clusters in the case of pairwise comparisons are considered. Illustrative examples are provided.
Źródło:
Control and Cybernetics; 2022, 51, 3; 343--387
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Novel visual object descriptor using surf and clustering algorithms
Autorzy:
Grycuk, R.
Powiązania:
https://bibliotekanauki.pl/articles/122762.pdf
Data publikacji:
2016
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
k-means
mean shift
clustering
image description
SURF
keypoints
content-based image retrieval (CBIR)
opis obrazu
algorytmy grupowania
detekcja punktów kluczowych
Opis:
In this paper we propose a method for object description based on two wellknown clustering algorithms (k-means and mean shift) and the SURF method for keypoints detection. We also perform a comparison of these clustering methods in object description area. Both of these algorithms require one input parameter; k-means (k, number of objects) and mean shift (h, window). Our approach is suitable for images with a non-homogeneous background thus, the algorithm can be used not only on trivial images. In the future we will try to remove non-important keypoints detected by the SURF algorithm. Our method is a part of a larger CBIR system and it is used as a preprocessing stage.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2016, 15, 3; 37-46
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Efficient Controller Placement Algorithm using Clustering in Software Defined Networks
Autorzy:
Jacob, Joshua
Shinde, Sumedha
Narayan, D. G.
Powiązania:
https://bibliotekanauki.pl/articles/27312951.pdf
Data publikacji:
2023
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
clustering
controller placement
PAM
K-means++
silhouette score
SDN
Opis:
Software defined networking (SDN) is an emerging network paradigm that separates the control plane from data plane and ensures programmable network management. In SDN, the control plane is responsible for decision-making, while packet forwarding is handled by the data plane based on flow entries defined by the control plane. The placement of controllers is an important research issue that significantly impacts the performance of SDN. In this work, we utilize clustering techniques to group networks into multiple clusters and propose an algorithm for optimal controller placement within each cluster. The evaluation involves the use of the Mininet emulator with POX as the SDN controller. By employing the silhouette score, we determine the optimal number of controllers for various topologies. Additionally, to enhance network performance, we employ the meeting point algorithm to calculate the best location for placing the controller within each cluster. The proposed approach is compared with existing works in terms of throughput, delay, and jitter using six topologies from the Internet Zoo dataset.
Źródło:
Journal of Telecommunications and Information Technology; 2023, 4; 9--17
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The PROMETHEE II method in multi-criteria evaluation of cryptocurrency exchanges
Metoda PROMETHEE II w wielokryterialnej ocenie giełd kryptowalut
Autorzy:
Kądziołka, K.
Powiązania:
https://bibliotekanauki.pl/articles/2048732.pdf
Data publikacji:
2021
Wydawca:
Akademia Bialska Nauk Stosowanych im. Jana Pawła II w Białej Podlaskiej
Tematy:
k-means algorithm
hierarchical clustering
cryptocurrency exchanges
composite indicator
weighting scheme
PROMETHEE II
Opis:
Subject and purpose of work: The aim of this work is to present the application possibilities of PROMETHEE II method used to create a ranking of cryptocurrency exchanges as well as comparing the results of multi-criteria and multi-dimensional analysis. A simulation method for determining the weights of criteria is proposed, which maximizes the similarity of the final ranking to the other ones. Materials and methods: PROMETHEE II method and taxonomic measure were used to create rankings of exchanges. Hierarchical clustering combined with the k-means algorithm was used to identify groups of exchanges with a similar level of the values of net flows. Publicly available data published on the Internet were analysed. Results: There was a high consistency in the ordering of exchanges when a multi-criteria and a multi-dimensional approach were used. Four groups of exchanges with a similar level of the values of net flows were identified. Exchanges in group one were characterized by the highest average net flows. Conclusions: The multi-criteria approach can be used as an alternative to the multi-dimensional assessment of cryptocurrency exchanges. The proposed simulation method for determining the weights of criteria can be helpful in case the researcher has no information about the importance of the criteria.
Źródło:
Economic and Regional Studies; 2021, 14, 2; 131-145
2083-3725
2451-182X
Pojawia się w:
Economic and Regional Studies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identyfikacja grup obiektów podobnych pod względem struktury zjawisk społeczno – ekonomicznych na przykładzie struktury wieku bezrobotnych
Identification of groups of similar objects in terms of the structure of socio-economic phenomena on-the example of age structure of the unemployed
Autorzy:
Kądziołka, Kinga
Powiązania:
https://bibliotekanauki.pl/articles/2055718.pdf
Data publikacji:
2022-05-11
Wydawca:
Zachodniopomorska Szkoła Biznesu w Szczecinie
Tematy:
podobieństwo struktur
wskaźnik podobieństwa struktur
grupowanie hierarchiczne
metoda k- średnich
bezrobocie
struktura wieku bezrobotnych
structure similarity
structure similarity index
hierarchical clustering
k-means method
age structure of the unemployed
unemployment
Opis:
Celem pracy jest prezentacja możliwości aplikacyjnych metod grupowania danych do identyfikacji grup obszarów podobnych pod względem struktury analizowanego zjawiska. Zaprezentowana zostanie metoda grupowania hierarchicznego, w której do wyzna-czania odległości między skupieniami wykorzystano wskaźnik niepodobieństwa struktur oraz przedstawiona zostanie propozycja metody grupowania niehierarchicznego, stanowiąca pewną analogię do metody k- średnich. Rozważania będą prowadzone na przykładzie oceny podobieństwa struktury wieku zarejestrowanych bezrobotnych w powiatach.
The aim of the work is to present the application possibilities of clustering methods to identify groups of objects similar in terms of the structure of the analyzed phenomenon. The hierarchical clustering method was proposed, in which the structure dissimilarity indicator was used to determine the distance between the clusters. Then a proposal of the non-hierarchical clu-stering method was presented. Considerations were conducted on the example of the similarity of the age structure of the registered unemployed in poviats.
Źródło:
Zeszyty Naukowe ZPSB Firma i Rynek; 2022, 1(61); 63-72
2657-3245
Pojawia się w:
Zeszyty Naukowe ZPSB Firma i Rynek
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Propozycja metody wspomagającej wybór miernika taksonomicznego na przykładzie oceny atrakcyjności giełd kryptowalut
A proposal of the method supporting the selection of a composite indicator on the example of the assessment of attractiveness of cryptocurrency exchanges
Autorzy:
Kądziołka, Kinga
Powiązania:
https://bibliotekanauki.pl/articles/2098010.pdf
Data publikacji:
2021-05-06
Wydawca:
Zachodniopomorska Szkoła Biznesu w Szczecinie
Tematy:
wybór metody porządkowania liniowego
giełdy kryptowalut
miernik taksonomiczny
grupowanie hierarchiczne
metoda Warda
metoda k-średnich
porządkowanie liniowe
linear ordering
cryptocurrency exchanges
taxonomic measure
composite indicator
hierarchical clustering
Ward’s method
k-means
Opis:
W niniejszej pracy zaproponowano metodę wyboru miernika taksonomicznego spośród wielu mierników opisujących analizowane zjawisko. W pracach dotyczących zastosowania mierników taksonomicznych często prezentowane są rankingi uzyskane za pomocą kilku różnych mierników. Ocena zgodności rankingów dokonywana jest m. in. za pomocą współczynników korelacji Spearmana, natomiast kwestia wyboru finalnego reprezentanta (miernika taksonomicznego i rankingu obiektów uzyskanego na podstawie jego wartości) jest zazwyczaj pomijana. Zaproponowana metoda wyboru finalnego miernika taksonomicznego uwzględnia zarówno stopień podobieństwa rankingu uzyskanego na podstawie wartości tego miernika do innych rankingów jak również zdolność miernika do grupowania obiektów. Ponadto wykorzystano grupowanie hierarchiczne połączone z metodą k-średnich do identyfikacji podzbiorów obiektów (tu: giełd walut kryptograficznych) podobnych pod względem wartości miernika taksonomicznego. Grupowanie hierarchiczne umożliwia podział obiektów na taką liczbę grup, jaka wyraźnie uwidoczni się na uzyskanym dendrogramie, zamiast popularnego w literaturze przedmiotu, „sztywnego” podziału na cztery grupy wg średniej i odchylenia standardowego wartości miernika (który nie zawsze jest optymalny). W analizowanym przykładzie metoda Warda została zastosowana do wyznaczenia początkowej liczby i środków (centroidów) grup, wykorzystanych następnie w metodzie k-średnich. Wykorzystanie dodatkowo metody k-średnich umożliwiło poprawę jakości grupowania w porównaniu z użyciem tylko metody Warda.
The aim of work is to propose a method for selection the final taxonomic measure from many its variants accepted by the researcher. The idea of the method is to choose the representative in such a way that the ranking obtained by the use of the taxonomic measure is strong similar to other rankings. The proposed method takes into account both similarity of rankings and the discrimination ability of the taxonomic measure. There was also proposed to use combined Ward’s method with k-means algorithm to identify groups of cryptocurrency exchanges with similar level of the taxonomic measure. The hybrid clustering method allowed to obtain higher clustering quality than Ward’s method.
Źródło:
Zeszyty Naukowe ZPSB Firma i Rynek; 2021, 1(59); 65-76
2657-3245
Pojawia się w:
Zeszyty Naukowe ZPSB Firma i Rynek
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The K-means Grouping Method as a Mean to Control the Performance of the Production Process
Wykorzystanie metody grupowania k-średnich do kontroli wydajności procesu produkcyjnego
Autorzy:
Kęsek, Marek
Powiązania:
https://bibliotekanauki.pl/articles/318166.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
production process performance
clustering
k-means
production cycle
R language
VBA
process mining
bolting
wydajność procesu produkcyjnego
grupowanie (clusterng)
cykl produkcyjny
język R
kotwienie (bolting)
Opis:
The paper presents a concept of using clusters of objects using the k-means method to control the performance of the production process, which runs under variable conditions. The distribution of the production process performance in production cycles grouped according to similarity is the basis for controlling the performance of subsequent production cycles. The practical part of the paper contains an example of calculations carried out according to this concept using the VBA and R languages, and is relates to the bolting process in underground mines.
W artykule przedstawiono koncepcję wykorzystania grupowania obiektów metodą k-średnich do kontroli wydajności procesu produkcyjnego, który przebiega w zmiennych warunkach. Rozkłady wydajności procesu produkcyjnego w pogrupowanych pod względem podobieństwa cyklach produkcyjnych, stanowią podstawę kontroli wydajności kolejnych cykli produkcyjnych. Część praktyczna pracy zawiera przykład obliczeń przeprowadzonych według tej koncepcji z użyciem języka VBA oraz języka R i dotyczy procesu kotwienia w kopalniach podziemnych.
Źródło:
Inżynieria Mineralna; 2020, 1, 1; 257-264
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
K-means is probabilistically poor
Autorzy:
Kłopotek, Mieczysław
Powiązania:
https://bibliotekanauki.pl/articles/2201613.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
k-means
clustering
probabilistic k-richness
Opis:
Kleinberg introduced the concept of k-richness as a requirement for an algorithm to be a clustering algorithm. The most popular algorithm k means dos not fit this definition because of its probabilistic nature. Hence Ackerman et al. proposed the notion of probabilistic k-richness claiming without proof that k-means has this property. It is proven in this paper, by example, that the version of k-means with random initialization does not have the property probabilistic k-richness, just rebuking Ackeman's claim.
Źródło:
Studia Informatica : systems and information technology; 2022, 2(27); 5--26
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Anomaly detection in a cutting tool by k-means clustering and support vector machines
Autorzy:
Lahrache, A.
Cocconcelli, M.
Rubini, R.
Powiązania:
https://bibliotekanauki.pl/articles/328445.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
knife diagnostics
k-means
hierarchical clustering
support vector machines
diagnostyka
grupowanie hierarchiczne
Opis:
This paper concerns the analysis of experimental data, verifying the applicability of signal analysis techniques for condition monitoring of a packaging machine. In particular, the activity focuses on the cutting process that divides a continuous flow of packaging paper into single packages. The cutting process is made by a steel knife driven by a hydraulic system. Actually, the knives are frequently substituted, causing frequent stops of the machine and consequent lost production costs. The aim of this paper is to develop a diagnostic procedure to assess the wearing condition of blades, reducing the stops for maintenance. The packaging machine was provided with pressure sensor that monitors the hydraulic system driving the blade. Processing the pressure data comprises three main steps: the selection of scalar quantities that could be indicative of the condition of the knife. A clustering analysis was used to set up a threshold between unfaulted and faulted knives. Finally, a Support Vector Machine (SVM) model was applied to classify the technical condition of knife during its lifetime.
Źródło:
Diagnostyka; 2017, 18, 3; 21-29
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Clustering Method in Different Geophysical Parameters for Researching Subsurface Environment
Zastosowanie metody klastrowania w różnych parametrach geofizycznych do badania środowiska podpowierzchniowego
Autorzy:
Le, Cuong Van Anh
Nguyen, Ngan Nhat Kim
Nguyen, Thuan Van
Powiązania:
https://bibliotekanauki.pl/articles/2172080.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
Electrical Resistivity Imaging
MASW
K-means Clustering
obrazowanie oporności elektrycznej
grupowanie K-średnich
Opis:
Safety of construction needs knowledge of physical parameters as stiffness or porosity of the subsurface environment. Combination of different geophysical methods such as electrical resistivity imaging and multichannel analysis of surface waves can provide distributions of resistivity and shear velocity which are responsible for the underground physical parameters. Their joint interpretation can solve individual problems of none-uniqueness of the solutions when expressing two inversion results to describe environment characteristics. In our work, the k-means clustering method can categorize the two parameters into specific zones that can help to interpret the geophysical data effectively. Our workflow consists of two stages in which two independent geophysical data are inverted and the k-means clustering is applied to the two results for achieving the specified groups. The collocated geophysical data are measured in District 9, Ho Chi Minh City, Vietnam. Matching with the geology drillhole information, the joint results generally present layered medium with the upper zone having smaller resistivity and shear velocity values and the bottom zone of stronger stiffness.
Bezpieczeństwo konstrukcji wymaga znajomości parametrów fizycznych, takich jak sztywność czy porowatość środowiska podpowierzchniowego. Połączenie różnych metod geofizycznych, takich jak obrazowanie rezystywności elektrycznej i wielokanałowa analiza fal powierzchniowych, może dostarczyć rozkłady rezystywności i prędkości ścinania, które są odpowiedzialne za parametry fizyczne podziemnych warstw. Ich wspólna interpretacja może rozwiązać indywidualne problemy niejednoznaczności rozwiązań przy wyrażaniu dwóch wyników inwersji do opisu cech środowiska. W naszej pracy metoda grupowania k-średnich może podzielić dwa parametry na określone strefy, co może pomóc w skutecznej interpretacji danych geofizycznych. Nasz przepływ pracy składa się z dwóch etapów, w których dwa niezależne dane geofizyczne są odwracane, a grupowanie k-średnich jest stosowane do dwóch wyników w celu uzyskania określonych grup. Zebrane dane geofizyczne są mierzone w Dystrykcie 9, Ho Chi Minh City, Wietnam. Dopasowując się do informacji uzyskanych z odwiertów geologicznych, wyniki połączeń ogólnie przedstawiają ośrodek warstwowy, w którym górna strefa ma mniejsze wartości rezystywności i prędkości ścinania, a dolna strefa ma większą sztywność.
Źródło:
Inżynieria Mineralna; 2022, 2; 39--47
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies