Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "harmonic extension" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
The harmonic and quasiconformal extension operators
Autorzy:
Partyka, Dariusz
Sakan, Ken
Zając, Józef
Powiązania:
https://bibliotekanauki.pl/articles/1341597.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Douady-Earle extension
homeomorphic extension
harmonic extension
universal Teichmüller space
quasiconformal mappings
quasihomographies
Beurling-Ahlfors extension
quasiconformal extension
diffeomorphic extension
quasisymmetric automorphisms
Poisson integral
harmonic mappings
quasisymmetric functions
Opis:
Different aspects of the boundary value problem for quasiconformal mappings and Teichmüller spaces are expressed in a unified form by the use of the trace and extension operators. Moreover, some new results on harmonic and quasiconformal extensions are included.
Źródło:
Banach Center Publications; 1999, 48, 1; 141-177
0137-6934
Pojawia się w:
Banach Center Publications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Harmonic mappings in the exterior of the unit disk
Autorzy:
Gregorczyk, Magdalena
Widomski, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/747049.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Harmonic mapping
meromorphic
quasiconformal extension
radius of convexity
radius of univalence
Opis:
In this paper we consider a class of univalent orientation-preserving harmonic functions defined on the exterior of the unit disk which satisfy the condition\(\sum_{n=1}^{\infty}n^{p}(|a_{n}|+|b_{n}|)\leq 1\). We are interested in finding radius of univalence and convexity for such class and we find extremal functions. Convolution, convex combination, and explicit quasiconformal extension for this class are also determined.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2010, 54, 1
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Frames and factorization of graph Laplacians
Autorzy:
Jorgensen, P.
Tian, F.
Powiązania:
https://bibliotekanauki.pl/articles/255936.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
unbounded operators
deficiency-indices
Hilbert space
boundary values
weighted graph
reproducing kernel
Dirichlet form
graph Laplacian
resistance network
harmonic analysis
frame
Parseval frame
Friedrichs extension
reversible random walk
resistance distance
energy Hilbert space
Opis:
Using functions from electrical networks (graphs with resistors assigned to edges), we prove existence (with explicit formulas) of a canonical Parseval frame in the energy Hilbert space [formula] of a prescribed infinite (or finite) network. Outside degenerate cases, our Parseval frame is not an orthonormal basis. We apply our frame to prove a number of explicit results: With our Parseval frame and related closable operators in [formula] we characterize the Priedrichs extension of the [formula]-graph Laplacian. We consider infinite connected network-graphs G = (V, E), V for vertices, and E for edges. To every conductance function c on the edges E of G, there is an associated pair [formula] where [formula] in an energy Hilbert space, and Δ (=Δc) is the c-graph Laplacian; both depending on the choice of conductance function c. When a conductance function is given, there is a current-induced orientation on the set of edges and an associated natural Parseval frame in [formula] consisting of dipoles. Now Δ is a well-defined semibounded Hermitian operator in both of the Hilbert [formula] and [formula]. It is known to automatically be essentially selfadjoint as an [formula]-operator, but generally not as an [formula] operator. Hence as an [formula] operator it has a Friedrichs extension. In this paper we offer two results for the Priedrichs extension: a characterization and a factorization. The latter is via [formula].
Źródło:
Opuscula Mathematica; 2015, 35, 3; 293-332
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies