Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fuzzy-neural system" wg kryterium: Temat


Wyświetlanie 1-27 z 27
Tytuł:
The support of alternative project choice with using intelligence systems
Autorzy:
Relich, M.
Powiązania:
https://bibliotekanauki.pl/articles/117788.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
decision support
investment planning
fuzzy-neural system
Opis:
This paper aims to make an approach that supports the process of taking investment decision in case if the primary project cannot be completed. The factors, which occur in investment decision-making, often have an imprecise and uncertain form. In this case may be used a fuzzy neural system that supports the choice of alternative project by improvement in the estimates precision for requested resources. The paper contains an example with the using of different approaches in the estimation of time for project critical tasks that commit the substantial enterprise resources.
Źródło:
Applied Computer Science; 2010, 6, 2; 7-18
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detekcja nieszczelności kotła fluidalnego z użyciem modeli rozmyto-neuronowych
Approach to boiler leak detection with fuzzy neural models
Autorzy:
Szadkowski, B.
Jankowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/257517.pdf
Data publikacji:
2011
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
detekcja awarii
systemy rozmyto-neuronowe
kocioł fluidalny
modelowanie
detection of outage
fuzzy-neural system
fluidised bed boiler
modelling
Opis:
Zreferowano badania modelowe nad detekcją nieszczelności kotłów fluidalnych z wykorzystaniem danych z archiwum. Modelowanie prowadzono w przyborniku Fuzzy Logic pakietu Matlab. Omówiono dwa podejścia do rozwiązania problemu. W pierwszym - opracowano modele rozmyto-neuronowe typu Takagi-Sugeno-Kanga (TSK) 4 zmiennych procesowych o dużej wrażliwości na przeciek. Uśrednione residua tych zmiennych, w przesuwnym oknie czasowym, pozwoliły wykryć 7 z 8 rozważanych przypadków nieszczelności. Oceniono długość okna i uzyskane wyprzedzenie detekcji względem wyłączenia bloku. Następnie opracowano i przetestowano model awarii o binarnym wyjściu. Równoległe wykorzystanie opracowanych modeli pozwoliło na wykrycie z kilkudniowym wyprzedzeniem wszystkich analizowanych awarii, potwierdzając przydatność modeli TSK w ważnym zadaniu eksploatacyjnym. Wskazano dalsze kierunki prac.
The research results into leak detection in a fluidised bed boiler are presented. The studies took advantage of the historical data from DCS in the professional power plant. Models of neuro-fuzzy Takagi-Sugeno-Kanga (TSK) type were built and tested in the Fuzzy Toolbox of Matlab. The roots of boiler outage (in water-steam pressure system and aside from this system) are indicated. The two approaches to leak detection task are described. In the first, the models of the 4 process variables sensitive to leakage were built. The residues of these models were evaluated in a moving time window. The length of the time window and the advance of leakage detection are discussed. Next, the model the TSK of the boiler faults with binary output was built and tested. Training data was collected for 3 cases of raised outage (models output - 1) and the normal work of installation (models output - 0). The parallel usage of proposed TSK models provided a successful detection of all studied fault cases a few days in advance. This has confirmed the suitability of the fuzzy neural models in an important exploitation task.
Źródło:
Problemy Eksploatacji; 2011, 2; 181-188
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance analysis of rough set–based hybrid classification systems in the case of missing values
Autorzy:
Nowicki, Robert K.
Seliga, Robert
Żelasko, Dariusz
Hayashi, Yoichi
Powiązania:
https://bibliotekanauki.pl/articles/2031102.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
rough sets
support vector machine
fuzzy system
neural networks
Opis:
The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 4; 307-318
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid intelligent system for pattern recognition
Autorzy:
Melin, P.
Castillo, O.
Powiązania:
https://bibliotekanauki.pl/articles/384459.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
soft computing
intelligent system
algorithms
fuzzy logic
neural networks
Opis:
We describe in this paper a general overview oj the analysis and design of hybrid intelligent systems for pattern recognition applications. Hybrid intelligent systems can be developed by a careful combination of several soft-computing techniques. The combination of soft computing techniques has to take advantage of the capabilities of each technique in solving port of the pattern recognition problem. We review the problems of face, fingerprint and mice recognition and their soiution using hybrid intelligent systems. Recognition rates achieved with the hybrid approaches are comparable with the best approaches known for solving these recognition problems.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2007, 1, 2; 13-19
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of Fuzzy System with Neural Aggregation FSNA with classical TSK fuzzy system in anti-collision problem of USV
Autorzy:
Szymak, P.
Powiązania:
https://bibliotekanauki.pl/articles/260160.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
neuro-fuzzy system
neural aggregation of fuzzy rules
cooperative co-evolution
anti-collision of USV
Opis:
The paper presents the research whose the main goal was to compare a new Fuzzy System with Neural Aggregation of fuzzy rules FSNA with a classical Takagi-Sugeno-Kanga TSK fuzzy system in an anti-collision problem of Unmanned Surface Vehicle USV. Both systems the FSNA and the TSK were learned by means of Cooperative Co-evolutionary Genetic Algorithm with Indirect Neural Encoding CCGA-INE. The paper includes an introduction to the subject, a description of the new FSNA and the tuning method CCGA-INE, and at the end, numerical research results with a summary. The research includes comparison of the FSNA with the classical TSK system in the anti-collision problem of the USV.
Źródło:
Polish Maritime Research; 2017, 3; 3-14
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A fuzzy neural network for knowledge acquisition in complex time series
Autorzy:
Kasabov, N.
Kim, J.
Kozma, R.
Powiązania:
https://bibliotekanauki.pl/articles/205889.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
logika rozmyta
sieć neuronowa rozmyta
układ dynamiczny
adaptation
computational neural net
fuzzy logic
fuzzy neural net
knowledge acquisition
time-series and dynamical system
Opis:
A novel fuzzy neural network, called FuNN, is applied here for time-series modeling. FuNN models have several features that make them well suited to a wide range of knowledge engineering applications. These strengths include fast and accurate learning, good generalisation capabilities, excellent explanation facilities in the form of semantically meaningful fuzzy rules, and the ability to accomodate both numerical data and existing expert knowledge about the problem under consideration. We investigate the effectiveness of the proposed neuro-fuzzy hybrid architectures for manipulating the future behaviour of nonlinear dynamical systems and interpreting fuzzy if-then rules. A well-known example of Box and Jenkins is used as a benchmark time series in the proposed modelling approach and the other modelling approach. Finally, experimental results and comparisons with the other popular neuro-fuzzy inference system, namely Adaptive Network-based Fuzzy Inference System (ANFIS) are also presented.
Źródło:
Control and Cybernetics; 1998, 27, 4; 593-611
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting return products in an integrated forward/reverse supply chain utilizing an ANFIS
Autorzy:
Kumar, D. T.
Soleimani, H.
Kannan, G.
Powiązania:
https://bibliotekanauki.pl/articles/329809.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
artificial neural network
adaptive network based fuzzy
inference system
closed loop supply chain
forecasting methods
fuzzy neural network
sztuczna sieć neuronowa
system wnioskowania
metoda prognozowania
sieć neuronowa rozmyta
Opis:
Interests in Closed-Loop Supply Chain (CLSC) issues are growing day by day within the academia, companies, and customers. Many papers discuss profitability or cost reduction impacts of remanufacturing, but a very important point is almost missing. Indeed, there is no guarantee about the amounts of return products even if we know a lot about demands of first products. This uncertainty is due to reasons such as companies’ capabilities in collecting End-of-Life (EOL) products, customers’ interests in returning (and current incentives), and other independent collectors. The aim of this paper is to deal with the important gap of the uncertainties of return products. Therefore, we discuss the forecasting method of return products which have their own open-loop supply chain. We develop an integrated two-phase methodology to cope with the closed-loop supply chain design and planning problem. In the first phase, an Adaptive Network Based Fuzzy Inference System (ANFIS) is presented to handle the uncertainties of the amounts of return product and to determine the forecasted return rates. In the second phase, and based on the results of the first one, the proposed multi-echelon, multi-product, multi-period, closed-loop supply chain network is optimized. The second-phase optimization is undertaken based on using general exact solvers in order to achieve the global optimum. Finally, the performance of the proposed forecasting method is evaluated in 25 periods using a numerical example, which contains a pattern in the returning of products. The results reveal acceptable performance of the proposed two-phase optimization method. Based on them, such forecasting approaches can be applied to real-case CLSC problems in order to achieve more reliable design and planning of the network.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 3; 669-682
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model of decision support system for ball positioning relative to the center of mobile beam
Model systemu wspomagania decyzji pozycjonowania układu kulki na równoważni
Autorzy:
Woźniak, M.
Gabryel, M.
Nowicki, R.
Powiązania:
https://bibliotekanauki.pl/articles/87302.pdf
Data publikacji:
2012
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
system wspomagania decyzji
zbiór rozmyty
sieć neuronowa
system techniczny
decision support system
fuzzy set
neural network
technical system
Opis:
Article aims to show the possibility of building a decision support system for the control of technical systems based on analysis of the characteristics of the system. Intelligent decision support systems are able to actively assist during operation. In the literature were shown examples of the use of artificial intelligence techniques for effective control of the operation of different systems. Frequently used techniques of artificial intelligence are fuzzy sets and neural networks. This article aims to show the possibility of developing such a system.
Artykuł ma na celu pokazać możliwość budowania systemu wspomagania kontroli układów technicznych na podstawie analizy wartości z charakterystyk. Inteligentne systemy wspomagania decyzji są w stanie aktywnie pomagać w czasie pracy. W literaturze wskazano wiele przykładów wykorzystania technik sztucznej inteligencji do skutecznego kontrolowania funkcjonowania różnych systemów. Najczęściej stosowanymi technikami inteligencji obliczeniowej są zbiory rozmyte i sieci neuronowe. Ten artykuł ma pokazać możliwości opracowania takiego systemu do badania układów technicznych.
Źródło:
Zeszyty Naukowe. Matematyka Stosowana / Politechnika Śląska; 2012, 2; 35-44
2084-073X
Pojawia się w:
Zeszyty Naukowe. Matematyka Stosowana / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Building intrusion detection systems based on the basis of methods of intellectual analysis of data
Budowa systemów wykrywania ataków na podstawie metod inteligentnej analizy danych
Autorzy:
Tolіupa, S.
Brailovskyi, M.
Parkhomenko, M.
Powiązania:
https://bibliotekanauki.pl/articles/952707.pdf
Data publikacji:
2018
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
intrusion detection system
attack
fuzzy logic
neural network
system wykrywania włamań
atak
logika rozmyta
sieć neuronowa
Opis:
Nowadays, with the rapid development of network technologies and with global informatization of society problems come to the fore ensuring a high level of information system security. With the increase in the number of computer security incidents, intrusion detection systems (IDS) started to be developed rapidly.Nowadays the intrusion detection systems usually represent software or hardware-software solutions, that automate the event control process, occurring in an information system or network, as well as independently analyze these events in search of signs of security problems. A modern approach to building intrusion detection systems is full of flaws and vulnerabilities, which allows, unfortunately, harmful influences successfully overcome information security systems. The application of methods for analyzing data makes it possible identification of previously unknown, non-trivial, practically useful and accessible interpretations of knowledge necessary for making decisions in various spheres of human activity. The combination of these methods along with an integrated decision support system makes it possible to build an effective system for detecting and counteracting attacks, which is confirmed by the results of imitation modeling.
W chwili obecnej szybki rozwój technologii sieciowych i globalnej informatyzacji społeczeństwa uwypukla problemy związane z zapewnieniem wysokiego poziomu bezpieczeństwa systemów informacyjnych. Wraz ze wzrostem liczby incydentów komputerowych związanych z bezpieczeństwem nastąpił dynamiczny rozwój systemów wykrywania ataków. Obecnie systemy wykrywania włamań i ataków to zazwyczaj oprogramowanie lub sprzętowo-programowe rozwiązania automatyzujące proces monitorowania zdarzeń występujących w systemie informatycznym lub sieci, a także samodzielnie analizujące te zdarzenia w poszukiwaniu oznak problemów bezpieczeństwa. Nowoczesne podejście do budowy systemów wykrywania ataków na systemy informacyjne jest pełne wad i słabych punktów, które niestety pozwalają szkodliwym wpływom na skuteczne pokonanie systemów zabezpieczania informacji. Zastosowanie metod inteligentnej analizy danych pozwala wykryć w danych nieznane wcześniej, nietrywialne, praktycznie użyteczne i dostępne interpretacje wiedzy niezbędnej do podejmowania decyzji w różnych sferach ludzkiej działalności. Połączenie tych metod wraz ze zintegrowanym systemem wspomagania decyzji umożliwia zbudowanie skutecznego systemu wykrywania i przeciwdziałania atakom, co potwierdzają wyniki modelowania.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2018, 8, 4; 28-31
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuro-fuzzy modelling based on a deterministic annealing approach
Autorzy:
Czabański, R.
Powiązania:
https://bibliotekanauki.pl/articles/908442.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system rozmyty
sieć neuronowa
ekstrakcja reguł
fuzzy systems
neural networks
neuro-fuzzy systems
rules extraction
deterministic annealing
prediction
Opis:
This paper introduces a new learning algorithm for artificial neural networks, based on a fuzzy inference system ANBLIR. It is a computationally effective neuro-fuzzy system with parametrized fuzzy sets in the consequent parts of fuzzy if-then rules, which uses a conjunctive as well as a logical interpretation of those rules. In the original approach, the estimation of unknown system parameters was made by means of a combination of both gradient and least-squares methods. The novelty of the learning algorithm consists in the application of a deterministic annealing optimization method. It leads to an improvement in the neuro-fuzzy modelling performance. To show the validity of the introduced method, two examples of application concerning chaotic time series prediction and system identification problems are provided.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 4; 561-576
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Approximation of phenol concentration using novel hybrid computational intelligence methods
Autorzy:
Pławiak, P.
Tadeusiewicz, R.
Powiązania:
https://bibliotekanauki.pl/articles/907935.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
soft computing
neural network
genetic algorithm
fuzzy system
evolutionary neural system
pattern recognition
chemometrics
przetwarzanie miękkie
sieć neuronowa
algorytm genetyczny
system rozmyty
rozpoznawanie obrazu
chemometria
Opis:
This paper presents two innovative evolutionary-neural systems based on feed-forward and recurrent neural networks used for quantitative analysis. These systems have been applied for approximation of phenol concentration. Their performance was compared against the conventional methods of artificial intelligence (artificial neural networks, fuzzy logic and genetic algorithms). The proposed systems are a combination of data preprocessing methods, genetic algorithms and the Levenberg–Marquardt (LM) algorithm used for learning feed forward and recurrent neural networks. The initial weights and biases of neural networks chosen by the use of a genetic algorithm are then tuned with an LM algorithm. The evaluation is made on the basis of accuracy and complexity criteria. The main advantage of proposed systems is the elimination of random selection of the network weights and biases, resulting in increased efficiency of the systems.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2014, 24, 1; 165-181
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Synthesis of intellectual subsystems of dynamic diagnosis of the condition of turbine units thermal power
Synteza inteligentnego podsystemu dynamicznej diagnostyki stanu turbogeneratorów elektrowni cieplnych
Autorzy:
Suleimenov, A.
Suleimenov, B.
Zhirnova, O.
Powiązania:
https://bibliotekanauki.pl/articles/408537.pdf
Data publikacji:
2017
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
technical diagnostics
intelligent technologie
expert system
fuzzy system
neural network
diagnostyka techniczna
inteligentna technologia
system ekspercki
system rozmyty
sieć neuronowa
Opis:
Technique of creating a sub-line diagnostics status turbine unit thermal power plant based on an analysis of its diagnostic features. Rapid assessment of the technical state of turbine unit allows an early stage to detect the possibility of an emergency and to localize it. It involves the integration of the subsystems of the existing process control system (PCS), which will allow more efficient use of its information, hardware and software. Evaluation of the technical condition of the turbine unit thermal power plant is proposed to determine the use of modern intelligent technologies. The proposed method was used in the development of rapid diagnostic subsystems technical state of turbine of thermal power in Almaty.
Zaproponowano metodykę opracowania podsystemu dynamicznej diagnostyki stanu turbogeneratora elektrowni cieplnej, która bazuje na analizie jego cech diagnostycznych. Dynamiczna ocena technicznego stanu turbogeneratora pozwala na wykrycie we wczesnym stadium awaryjnych sytuacji i jej lokalizacji. Proponuje się integrację tego podsystemu z istniejącym systemem automatycznego sterowania procesem technologicznym, co pozwoli bardziej efektywnie wykorzystać jego informacyjne, techniczne i programowe zabezpieczenia. Ocena technicznego stanu turbogeneratora elektrowni cieplnej proponuje się określić z wykorzystaniem współczesnych technologii inteligentnych. Zaproponowana metodyka była wykorzystana przy opracowaniu podsystemu diagnostyki dynamicznej stanu technicznego turbogeneratora w elektrowni cieplnej w Ałmaty.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2017, 7, 2; 40-43
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Extraction of fuzzy rules using deterministic annealing integrated with ε-insensitive learning
Autorzy:
Czabański, R.
Powiązania:
https://bibliotekanauki.pl/articles/908395.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system rozmyty
sieć neuronowa
sieć neuronowa rozmyta
ekstrakcja reguł
fuzzy systems
neural networks
neuro-fuzzy systems
rules extraction
deterministic annealing
Opis:
A new method of parameter estimation for an artificial neural network inference system based on a logical interpretation of fuzzy if-then rules (ANBLIR) is presented. The novelty of the learning algorithm consists in the application of a deterministic annealing method integrated with ε-insensitive learning. In order to decrease the computational burden of the learning procedure, a deterministic annealing method with a “freezing” phase and ε-insensitive learning by solving a system of linear inequalities are applied. This method yields an improved neuro-fuzzy modeling quality in the sense of an increase in the generalization ability and robustness to outliers. To show the advantages of the proposed algorithm, two examples of its application concerning benchmark problems of identification and prediction are considered.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2006, 16, 3; 357-372
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fusion Technology of Neural Networks and Fuzzy Systems: a Chronicled Progression from the Laboratory to Our Daily Lives
Autorzy:
Takagi, H.
Powiązania:
https://bibliotekanauki.pl/articles/911142.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć neuronowa
system rozmyty
algorytmy
cooperative models
neural networks
fuzzy systems
genetic algorithms
real world applications
overview
Opis:
We chronicle the research on the fusion technology of neural networks and fuzzy systems (NN+FS), the models that have been proposed from this research, and the commercial products and industrial systems that have adopted these models. First, we review the NN+FS research activity during the early stages of their development in Japan, the US, and Europe. Next, following the classifi- cation of NN+FS models, we show the ease of fusing these technologies based on the similarities of the data flow network structures and the non-linearity realization strategies of NNs and FSs. Then, we describe several models and applications of NN+FS. Finally, we introduce some important and recently developed NN+FS patents.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2000, 10, 4; 647-673
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robustifying analysis of the direct adaptive control of unknown multivariable nonlinear systems based on a new neuro-fuzzy method
Autorzy:
Theodoridis, D. C.
Boutalis, Y.S.
Christodoulou, M. A.
Powiązania:
https://bibliotekanauki.pl/articles/91598.pdf
Data publikacji:
2011
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
nonlinear systems
control
neuro-fuzzy dynamical system
fuzzy systems
FS
fuzzy recurrent high order neural network
F-RHONN
adaptive regulator
parameter
“Hopping”
“Modified Hopping”
modeling errors
asymptotic regulation
Opis:
In this paper, we are dealing with the problem of directly regulating unknown multivariable affine in the control nonlinear systems and its robustness analysis. The method employs a new Neuro-Fuzzy Dynamical System definition, which uses the concept of Fuzzy Systems (FS) operating in conjunction with High Order Neural Networks. In this way the unknown plant is modeled by a fuzzy - recurrent high order neural network structure (F-RHONN), which is of the known structure considering the neglected nonlinearities. The development is combined with a sensitivity analysis of the closed loop in the presence of modeling imperfections and provides a comprehensive and rigorous analysis showing that our adaptive regulator can guarantee the convergence of states to zero or at least uniform ultimate boundedness of all signals in the closed loop when a not-necessarily-known modeling error is applied. The existence and boundedness of the control signal is always assured by employing a method of parameter “Hopping” and “Modified Hopping”, which appears in the weight updating laws. Simulations illustrate the potency of the method showing that by following the proposed procedure one can obtain asymptotic regulation despite the presence of modeling errors. Comparisons are also made to simple recurrent high order neural network (RHONN) controllers, showing that our approach is superior to the case of simple RHONN’s.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2011, 1, 1; 59-79
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Soft computing in model-based predictive control
Autorzy:
Tatjewski, P.
Ławryńczuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/908473.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sterowanie procesami
sterowanie predykcyjne
system nieliniowy
system rozmyty
sieć neuronowa
process control
model predictive control
nonlinear systems
fuzzy systems
neural networks
Opis:
The application of fuzzy reasoning techniques and neural network structures to model-based predictive control (MPC) is studied. First, basic structures of MPC algorithms are reviewed. Then, applications of fuzzy systems of the Takagi-Sugeno type in explicit and numerical nonlinear MPC algorithms are presented. Next, many techniques using neural network modeling to improve structural or computational properties of MPC algorithms are presented and discussed, from a neural network model of a process in standard MPC structures to modeling parts or entire MPC controllers with neural networks. Finally, a simulation example and conclusions are given.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2006, 16, 1; 7-26
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using hybridized techniques to develop an online workplace risk assessment tool
Użycie technik hybrydowych w implementacji systemu online do oceny stresu w miejscu pracy
Autorzy:
Ghosh, A.
Nafalski, A.
Tweedale, J.
Dollard, M.
Powiązania:
https://bibliotekanauki.pl/articles/408265.pdf
Data publikacji:
2012
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
stres w miejscu pracy
inteligentny agent
system wieloagentowy
systemy neuronowe
logika rozmyta
work stress
agent
multi-agent system
neural network
fuzzy logic
Opis:
Recent research has shown that work stress has become a widespread concern in Australia and other countries. It is a growing concern across all employment sectors as well as occupational levels and reported as a common cause of occupational illness. Work stress can be prevented if it is identified, measured and changes are made to the work environment. Multi-Agent technology has been used in many applications but has not been applied in psychology for analysing data. This paper presents hybridized techniques, which have been used to develop an online tool for work stress assessment and prevention.
Ostatnie badania wykazały, że stres w miejscu pracy stał się przedmiotem rosnących obaw w Australii i w innych krajach. Wszystkie sektory zatrudnienia doświadczają wzrostu psychicznych chorób zatrudnieniowych. Stres w miejscu pracy może być uniknięty jeśli jest identyfikowany, mierzony i stosowne zmiany są implementowane w środowisku pracy. Technologia systemów wieloagentowych jest używana w wielu aplikacjach, lecz nie była dotąd zastosowana w psychologii do analizy danych. Artykuł prezentuje techniki hybrydowe, zastosowane do oceny online i prewencji stresu.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2012, 4b; 42-45
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Supply chain risk management by Monte Carlo method
Zarządzanie ryzykiem łańcucha dostaw za pomocą metody Monte Carlo
Autorzy:
Rymarczyk, T.
Kłosowski, G.
Powiązania:
https://bibliotekanauki.pl/articles/407698.pdf
Data publikacji:
2017
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
project management
decision support systems
neural networks
fuzzy logic
zarządzanie projektami
system wspomagania decyzji
sieci neuronowe
logika rozmyta
Opis:
In this paper, the conceptual model of risk-based cost estimation for completing tasks within supply chain is presented. This model is a hybrid. Its main unit is based on Monte Carlo Simulation (MCS). Due to the fact that the important and difficult to evaluate input information is vector of risk-occur probabilities the use of artificial intelligence method was proposed. The model assumes the use of fuzzy logic or artificial neural networks – depending on the availability of historical data. The presented model could provide support to managers in making valuation decisions regarding various tasks in supply chain management.
W artykule zaprezentowano przykład zastosowania hybrydowego systemu wspomagania decyzji w kontekście zarządzania ryzykiem w łańcuchu dostaw. Główny moduł sterownika bazuje na koncepcji symulacji Monte Carlo. Wektor danych wejściowych zawiera istotne informacje, których wyrażenie w postaci zmiennych ilościowych stanowi wyzwanie, w związku z czym zaproponowano użycie sztucznej inteligencji. W zależności od dostępności do danych historycznych, sterownik decyzyjny zastosuje sieci neuronowe lub logikę rozmytą. Zaprezentowane rozwiązanie może stanowić wsparcie dla menedżerów podczas podejmowania decyzji będących odpowiedzią na różnorodne ryzyka w obszarze zarządzania łańcuchem dostaw.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2017, 7, 4; 20-23
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The use of a hybrid model of the expert system for assessing the potentiality of manufacturing the assumed quantity of wire harnesses
Hybrydowy model eksperckiego systemu oceny stabilności systemu produkcyjnego
Autorzy:
Burduk, Anna
Grzybowska, Katarzyna
Safonyk, Andrii
Powiązania:
https://bibliotekanauki.pl/articles/361998.pdf
Data publikacji:
2019
Wydawca:
Wyższa Szkoła Logistyki
Tematy:
production system
risk assessment
artificial neural networks
fuzzy logic
stability
variability
system produkcji
ocena ryzyka
sztuczne sieci neuronowe
logika rozmyta
stabilność
zmienność
Opis:
Wstęp: W artykule przedstawiono koncepcję sterowania systemem produkcyjnym, pozwalającą na zachowanie jego stabilności, a tym samym na realizację założonych planów produkcyjnych. W tym celu zaproponowano połączenia modeli symulacyjnych i modeli sztucznych sieci neuronowych (SSN) systemu produkcyjnego. Połączenie obydwu typów modeli było możliwe dzięki opracowaniu hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji planu produkcji (celu) w zależności od wielkości ryzyka i poziomu stabilności analizowanego systemu produkcyjnego. Analizowany problem - możliwość realizacji planów produkcyjnych w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego - jest trudny do zamodelowania matematycznego. Jednak na podstawie analizy danych, pochodzących z modelu symulacyjnego i modelu ANN, można uzyskać informacje dotyczące zależności odpowiadających sobie wartości wejściowych i wyjściowych. Metody: Na podstawie przedstawionego sposobu zarządzania procesu produkcyjnego z wykorzystaniem modeli komputerowych, przeanalizowano możliwości zastosowania modeli symulacyjnych i modeli ANN w ocenie stabilności i ryzyka systemów produkcyjnych. Dokonano analizy i porównania obydwu typów modeli ze względu na sposób budowy oraz rodzaj danych wejściowych i wyjściowych. Wyniki: Na bezpośrednie połączenie modeli symulacyjnych i modeli SSN nie pozwala ich odmienna budowa, specyfika oraz inne rodzaje danych wejściowych i wyjściowych. Dlatego prezentowana w artykule koncepcja fuzji obydwu typów modeli odbywa się poprzez bazę wiedzy eksperckiej i wnioskowanie rozmyte. Wnioski: Na potrzeby sterowania systemem produkcyjnym, zaproponowano budowę hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji celu w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego.
Background: Control plays the main role in ensuring the stability of production processes, while digital models of processes and methods of artificial intelligence are used more and more commonly in it. Production of highly diversified items in small lots at low inventory levels is characterised by a much lower stability as compared with largelot manufacturing. Additionally, innovations created for items or processes result in disturbances to current work. Although this turbulence is usually momentary, it may lead to a loss of function or manufacturing stability, which in turn translates into financial losses, as well as losing customers. This paper presents the potential of using simulation models and artificial neural network models to assess the stability of a reorganized production system. Methods: The problem analysed in the paper is that of merging a simulation model with an ANN model by designing a hybrid model. A direct connection of both types of models is not possible due to their various structures, specificity, and different purposes, as well as the various types of input and output data. Therefore, the idea of merging these two types of models through an expert knowledge base and fuzzy inference was proposed. The results from the simulation model and the ANN model were used to gather the knowledge on the production system being analysed. It has been proposed that the output from the simulation model provided knowledge of the risk level, while the output from the ANN model provided knowledge of process stability. Results: The paper presents the idea of projecting a hybrid model of the expert system in order to assess the stability of a reorganized production system. A model of a hybrid expert system was developed to assess the potential of executing the assumed production plans. The level of risk and the level of stability determined by the simulation model and the ANN model are entered into the system. The output from the expert model is the value of the variable determining the potential of achieving the goal. In the construction of the model, fuzzy inference was used, which uses linguistic variables and is characterized by a knowledge system in the form of fuzzy rules "if ... then ...". For both the independent variable and for the dependent variable, a set of membership functions representing accepted linguistic variables was proposed, and then decision rules were determined. The idea of merging simulation models with ANN models was tested on a practical example in production system that manufactures products for dishwashers. Conclusions: The potentiality to execute production plans depending on the level of risk and the level of stability of the production system is too complicated to be modelled mathematically, but based on the analysis of data from the simulation and ANN models, it is possible to obtain information concerning the relations between corresponding input and output values.
Źródło:
LogForum; 2019, 15, 4; 459-473
1734-459X
Pojawia się w:
LogForum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid model of an expert system for assessing the stability of a production system
Hybrydowy model eksperckiego systemu oceny stabilności systemu produkcyjnego
Autorzy:
Burduk, A.
Grzybowska, K.
Kovács, G.
Powiązania:
https://bibliotekanauki.pl/articles/362325.pdf
Data publikacji:
2018
Wydawca:
Wyższa Szkoła Logistyki
Tematy:
production system
risk assessment
artificial neural networks
fuzzy logic
stability
variability
system produkcji
ocena ryzyka
sieci neuronowe sztuczne
logika rozmyta
stabilność
zmienność
Opis:
Background: The article presents the concept of control of the production system, which allows to maintain its stability, and thus to implement the established production plans. For this purpose, combinations of simulation models and artificial neural network (ANN) models of the production system have been suggested. The combination of both types of models was possible thanks to the development of a hybrid model of the expert system to assess the possibility of implementing the production plan (objective) depending on the risk size and the level of stability of the production system analysed. The analysed problem - the possibility of implementing production plans depending on the risk size and the level of stability of the production system - is difficult to mathematical modelling. However, based on the data analysis from the simulation model and the ANN model, we can obtain information on the dependences of the corresponding input and output values. Methods: Based on the presented method of managing the production process using computer models, the possibilities of using simulation models and ANN models in assessing the stability and risk of production systems have been analysed. The analysis and comparison of both types of models have been performed due to the construction and the type of input and output data. Results: The direct combination of simulation models and ANN models is not allowed by their different structure, specificity and other types of input and output data. Therefore, the concept of combination of both types of models presented in the article is conducted via a database of expertise and fuzzy inference. Conclusions: For the purpose of controlling the production system, it was suggested to build a hybrid model of an expert system to assess the possibility of achieving the objective depending on the risk size and the level of stability of the production systems.
Wstęp: W artykule przedstawiono koncepcję sterowania systemem produkcyjnym, pozwalającą na zachowanie jego stabilności, a tym samym na realizację założonych planów produkcyjnych. W tym celu zaproponowano połączenia modeli symulacyjnych i modeli sztucznych sieci neuronowych (SSN) systemu produkcyjnego. Połączenie obydwu typów modeli było możliwe dzięki opracowaniu hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji planu produkcji (celu) w zależności od wielkości ryzyka i poziomu stabilności analizowanego systemu produkcyjnego. Analizowany problem – możliwość realizacji planów produkcyjnych w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego – jest trudny do zamodelowania matematycznego. Jednak na podstawie analizy danych, pochodzących z modelu symulacyjnego i modelu ANN, można uzyskać informacje dotyczące zależności odpowiadających sobie wartości wejściowych i wyjściowych. Metody: Na podstawie przedstawionego sposobu zarządzania procesu produkcyjnego z wykorzystaniem modeli komputerowych, przeanalizowano możliwości zastosowania modeli symulacyjnych i modeli ANN w ocenie stabilności i ryzyka systemów produkcyjnych. Dokonano analizy i porównania obydwu typów modeli ze względu na sposób budowy oraz rodzaj danych wejściowych i wyjściowych. Wyniki: Na bezpośrednie połączenie modeli symulacyjnych i modeli SSN nie pozwala ich odmienna budowa, specyfika oraz inne rodzaje danych wejściowych i wyjściowych. Dlatego prezentowana w artykule koncepcja fuzji obydwu typów modeli odbywa się poprzez bazę wiedzy eksperckiej i wnioskowanie rozmyte. Wnioski: Na potrzeby sterowania systemem produkcyjnym, zaproponowano budowę hybrydowego modelu systemu ekspertowego do oceny możliwości realizacji celu w zależności od wielkości ryzyka i poziomu stabilności systemu produkcyjnego.
Źródło:
LogForum; 2018, 14, 4; 507-518
1734-459X
Pojawia się w:
LogForum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using artificial immune and case-based reasoning methods in classification of treatment effectiveness
Autorzy:
Badura, D.
Ferdynus, D.
Powiązania:
https://bibliotekanauki.pl/articles/333874.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
wnioskowanie bazujące na przykładach
sztuczne systemy immunologiczne
sieci neuronowe rozmyte
case-based reasoning
artificial immune system
fuzzy neural nets
Opis:
The article concerns the analysis of classification of medical data by use of selected method of artificial intelligence: case-based reasoning. The subject of the research is the assessment of effective treatment, being one of the most important medical problems. The basis work of the assessment system should be one of the classification methods. The aim of the attempted research is to study which of the enumerated method will be able to group data containing incomplete information in the best way. The classified data are descended from the patients with nephroblastoma and patients with backbone pain. The final aim of the research is to work out the functioning method of the learning system, assisting the doctor with making a decision during working out on patient's treatment therapy, and making analyses of the treatment effectiveness. On the basis of the medical tests, the system will classify the data assigning them to the appropriate therapy groups. Moreover, in the system will be used artificial immunology as the method of generalizing or extrapolating of the gathering and considering so far cases.
Źródło:
Journal of Medical Informatics & Technologies; 2007, 11; 221-226
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Methodology to knowledge discovery for fault diagnosis of hybrid dynamical systems: demonstration on two tanks system
Autorzy:
Achbi, Mohammed Said
Mhamdi, Lotfi
Kechida, Sihem
Dhouibi, Hedi
Powiązania:
https://bibliotekanauki.pl/articles/329522.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
hybrid dynamic systems
generation of residues
evaluation of residues
monitoring
diagnosis
neural fuzzy systems
hybrydowy system dynamiczny
monitorowanie
diagnoza
systemy neuronowo-rozmyte
Opis:
The work carried out in this article concerns on the implementation off a diagnostic procedure for hybrid dynamic systems (HDS) whose objective is to guarantee the proper functioning of industrial installations. In this context, the main contributions of this work are summarized into three parts: The first part is oriented to the modeling approach dedicated to HDS. The aim is to find an adequate model combining both aspects (continuous and discrete dynamics). The use of Neuro-fuzzy networks makes it possible to build a model of the system and to follow all the modes without it being necessary to identify or discern them. The second part concerns the synthesis of a fault diagnostic technique based on a fuzzy inference system. A Neuro-Fuzzy network based is used for residual generation, while for the residual evaluation, a fuzzy reasoning model is used which can mainly introduce heuristic information into the analysis scheme and takes the appropriate decision regarding the actual behaviour of the process. The proposed approach is successfully applied to monitoring faults of a non-linear three-tank system and the results confirm the effectiveness of this approach.
Źródło:
Diagnostyka; 2020, 21, 4; 115-122
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Data-driven techniques for the fault diagnosis of a wind turbine benchmark
Autorzy:
Simani, S.
Farsoni, S.
Castaldi, P.
Powiązania:
https://bibliotekanauki.pl/articles/330715.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fault diagnosis
analytical redundancy
fuzzy system
neural network
residual generator
fault estimation
wind turbine benchmark
diagnostyka uszkodzeń
redundancja analityczna
system rozmyty
sieć neuronowa
estymacja błędu
turbina wiatrowa
Opis:
This paper deals with the fault diagnosis of wind turbines and investigates viable solutions to the problem of earlier fault detection and isolation. The design of the fault indicator, i.e., the fault estimate, involves data-driven approaches, as they can represent effective tools for coping with poor analytical knowledge of the system dynamics, together with noise and disturbances. In particular, the proposed data-driven solutions rely on fuzzy systems and neural networks that are used to describe the strongly nonlinear relationships between measurement and faults. The chosen architectures rely on nonlinear autoregressive models with exogenous input, as they can represent the dynamic evolution of the system along time. The developed fault diagnosis schemes are tested by means of a high-fidelity benchmark model that simulates the normal and the faulty behaviour of a wind turbine. The achieved performances are also compared with those of other model-based strategies from the related literature. Finally, a Monte-Carlo analysis validates the robustness and the reliability of the proposed solutions against typical parameter uncertainties and disturbances.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 2; 247-268
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Expert System Coupled With a Hierarchical Structure of Fuzzy Neural Networks for Fault Diagnosis
Autorzy:
Calado, J. M. F.
Costa, I. S.
Powiązania:
https://bibliotekanauki.pl/articles/908283.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
rozpoznanie błędu
wykrywanie błędu
system ekspertowy
sieć neuronowa rozmyta
fault diagnosis
fault detection
fault isolation
shallow knowledge
deep knowledge
expert system
fuzzy neural network
abrupt faults
incipient faults
Opis:
An on-line fault diagnosis system, designed to be robust to the normal transient behaviour of the process, is described. The overall system consists of an expert system cascade with a hierarchical structure of fuzzy neural networks, corresponding to a multi-stage fault detection and isolation system. The fault detection is performed through the expert system by means of fault detection heuristic rules, generated from deep and shallow knowledge of the process under consideration. If a fault is detected, the hierarchical structure of fuzzy neural networks starts and it performs the fault isolation task. The structure of this diagnosis system was designed to allow for the diagnosis of single and multiple simultaneous abrupt and incipient faults from only single abrupt fault symptoms. Also, it combines the advantages of both fuzzy reasoning and neural networks learning capacity. A continuous binary distillation column has been used as a test bed of the current approach. Single, double and triple simultaneous abrupt faults, as well as incipient faults, have been considered. The preliminary results obtained show a good accuracy, even in the case of multiple faults.
Źródło:
International Journal of Applied Mathematics and Computer Science; 1999, 9, 3; 667-687
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimation of discharge correction factor of modified Parshall flume using ANFIS and ANN
Autorzy:
Saran, D.
Tiwari, N. K.
Powiązania:
https://bibliotekanauki.pl/articles/1818494.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
Discharge Correction Factor
Adaptive Neuro-Fuzzy Inference System
artificial neural network
Multiple Non-linear Regression
parshall flumes
współczynnik korygujący wyładowania
adaptacyjny system neuronowo-rozmyty
sztuczna sieć neuronowa
regresja wielokrotna nieliniowa
Opis:
Purpose: To evaluate and compare the capability of ANFIS (Adaptive Neuro-Fuzzy-Inference System), ANN (Artificial Neural Network), and MNLR (Multiple Non-linear Regression) techniques in the estimation and formulation of Discharge Correction Factor (Cd) of modified Parshall flumes as based on linear relations and errors between input and output data. Design/methodology/approach: Acknowledging the necessity of further research in this field, experiments were conducted in the Hydraulics Laboratory of Civil Engineering Department, National Institute of Technology, Kurukshetra, India. The Parshall flume characteristics, associated longitudinal slopes and the discharge passing through the flume were varied. Consequent water depths at specific points in Parshall flumes were noted and the values of Cd were computed. In this manner, a data set of 128 observations was acquired. This was bifurcated arbitrarily into a training dataset consisting of 88 observations and a testing dataset consisting of 40 observations. Models developed using the training dataset were checked on the testing dataset for comparison of the performance of each predictive model. Further, an empirical relationship was formulated establishing Cd as a function of flume characteristics, longitudinal slope, and water depth at specific points using the MNLR technique. Moreover, Cd was estimated using soft computing tools; ANFIS and ANN. Finally, a sensitivity analysis was done to find out the flume variable having the greatest influence on the estimation of Cd. Findings: The predictive accuracy of the ANN-based model was found to be better than the model developed using ANFIS, followed by the model developed using the MNLR technique. Further, sensitivity analysis results indicated that primary depth reading (Ha) as input parameter has the greatest influence on the prediction capability of the developed model. Research limitations/implications: Since the soft computing models are data based learning, hence the prediction capability of these models may dwindle if data is selected beyond the current data range, which is based on the experiments conducted under specific conditions. Further, since the present study has faced time and facility constraints, hence there is still a huge scope of research in this field. Different lateral slopes, combined lateral- longitudinal slopes, and more modified Parshall flume models of larger sizes can be added to increase the versatility of the current research. Practical implications: Cd of modified Parshall flumes can be predicted using the ANN- based prediction model more accurately as compared to other considered techniques. Originality/value: The comparative analysis of prediction models, as well as the formulation of relation, has been conducted in this study. In all the previous works, little to no soft computing techniques have been applied for the analysis of Parshall flumes. Even the regression techniques have been applied only on Parshall flumes of standard sizes. However, this paper includes not only Parshall flume of standard size but also a modified Parshall flume in its pursuit of predicting Cd with the help of ANN and ANFIS based prediction models along with MNLR technique.
Źródło:
Archives of Materials Science and Engineering; 2020, 105, 1; 17--30
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A class of neuro-computational methods for assamese fricative classification
Autorzy:
Patgiri, C.
Sarma, M.
Sarma, K. K.
Powiązania:
https://bibliotekanauki.pl/articles/91763.pdf
Data publikacji:
2015
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
neuro-computational classifier
fricative phonemes
Assamese language
Recurrent Neural Network
RNN
neuro fuzzy classifier
linear prediction cepstral coefficients
LPCC
self-organizing map
SOM
adaptive neuro-fuzzy inference system
ANFIS
klasyfikator neuronowy
klasyfikator neuronowo rozmyty
sieć Kohonena
Opis:
In this work, a class of neuro-computational classifiers are used for classification of fricative phonemes of Assamese language. Initially, a Recurrent Neural Network (RNN) based classifier is used for classification. Later, another neuro fuzzy classifier is used for classification. We have used two different feature sets for the work, one using the specific acoustic-phonetic characteristics and another temporal attributes using linear prediction cepstral coefficients (LPCC) and a Self Organizing Map (SOM). Here, we present the experimental details and performance difference obtained by replacing the RNN based classifier with an adaptive neuro fuzzy inference system (ANFIS) based block for both the feature sets to recognize Assamese fricative sounds.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2015, 5, 1; 59-70
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie regulatorów neuronowego i rozmytego do sterowania poziomem wody w układzie kaskadowym dwóch zbiorników
Use of neural and fuzzy controllers to control water level in two-tank cascade system
Autorzy:
Tomera, M.
Kasprowicz, A.
Powiązania:
https://bibliotekanauki.pl/articles/223272.pdf
Data publikacji:
2012
Wydawca:
Akademia Marynarki Wojennej. Wydział Dowodzenia i Operacji Morskich
Tematy:
sterowanie rozmyte
sterowanie neuronowe
radialne funkcje bazowe
układ kaskadowy dwóch zbiorników
mikrokontroler sygnałowy
fuzzy control
neural control
radial base functions
two-tank cascade system
digital signal processor
Opis:
W artykule przedstawione zostały regulatory zbudowane w oparciu o metody sztucznej inteligencji. Klasyczny regulator PID zastosowany do sterowania poziomem wody w układzie kaskadowym dwóch zbiorników zastąpiony został regulatorami rozmytym i neuronowym. Struktura regulatora rozmytego działającego w oparciu o logikę rozmytą wzorowana była na klasycznym liniowym regulatorze PID. Regulator neuronowy jest równoważnikiem regulatora rozmytego zbudowanym w oparciu o sztuczną sieć neuronową o radialnych funkcjach bazowych (RBF). Wstępne badania układów sterowania z rozważanymi regulatorami wykonane zostały w środowisku obliczeniowym MATLAB/Simulink z użyciem modeli symulacyjnych. Badania docelowe przeprowadzone były w układzie fizycznym, w którym algorytmy sterowania zaprogramowane zostały w mikrokontrolerze sygnałowym TMS320F28335, wykorzystanym do automatycznego sterowania poziomem wody w dolnym zbiorniku. Przy porównaniu uzyskanych wyników pod uwagę wzięty został również klasyczny regulator liniowy PID.
This paper presents controllers built according to the methods of artificial intelligence. The classic PID controller used to control the level of water in a cascade of two tanks was replaced with regulators: fuzzy and neural. The structure of fuzzy controller acting on the fuzzy logic was base on a classical linear PID controller. A neural controller is equivalent to a fuzzy controller based on artificial neural network having radial base functions (RBF). Preliminary testing of control systems with the controllers considered were made in computing simulation MATLAB/Simulink. The final investigations were conducted in the target physical system in which the control algorithms were programmed in the signal processor TMS320F28335, used for automatic control of the water level in the lower tank. In comparing the results obtained the classic linear PID controller was considered.
Źródło:
Zeszyty Naukowe Akademii Marynarki Wojennej; 2012, R. 53 nr 3 (190), 3 (190); 123-138
0860-889X
Pojawia się w:
Zeszyty Naukowe Akademii Marynarki Wojennej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-27 z 27

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies