- Tytuł:
- Evaluation of the Possibilities of Sodium Silicate Sands Application in Automated Hot-Box Process of Cores Shooting
- Autorzy:
-
Stachowicz, M.
Granat, K.
Obuchowski, P. - Powiązania:
- https://bibliotekanauki.pl/articles/382506.pdf
- Data publikacji:
- 2017
- Wydawca:
- Polska Akademia Nauk. Czytelnia Czasopism PAN
- Tematy:
-
foundry technology
sodium silicate
core box
core shooting
bending strength
technologia odlewnicza
krzemian sodu
rdzennica
rdzeń wstrzeliwany
wytrzymałość na zginanie - Opis:
- The paper presents the results of preliminary research on the use of silica sands with hydrated sodium silicate 1.5% wt. of binder for the performance of eco-friendly casting cores in hot-box technology. To evaluate the feasibility of high quality casting cores performed by the use of this method, the tests were made with the use of a semiautomatic core shooter using the following operating parameters: initial shooting pressure of 6 bar, shot time 4 s and 2 s, core-box temperature 200, 250 and 300 °C and core heating time 30, 60, 90 and 150 s. Matrixes of the moulding sands were two types of high-silica sand: fine and medium. Moulding sand binder was a commercial, unmodified hydrated sodium silicate having a molar module SiO2/Na2O of 2.5. In one shot of a core-shooter were made three longitudinal samples (cores) with a total volume of about 2.8 dm3. The samples thus obtained were subjected to an assessment of the effect of shooting parameters, i.e. shooting time, temperature and heating time, using the criteria: core-box fill rate, bending strength (RgU), apparent density and surface quality after hardening. The results of the trials on the use of sodium silicate moluding sands made it possible to further refine the conditions of next research into the improvement of inorganic warm-box/hot-box technology aimed at: reduction of heating temperature and shot time. It was found that the performance of the cores depends on the efficiency of the venting system, shooting time, filling level of a shooting chamber and grains of the silica matrix used.
- Źródło:
-
Archives of Foundry Engineering; 2017, 17, 4; 155-160
1897-3310
2299-2944 - Pojawia się w:
- Archives of Foundry Engineering
- Dostawca treści:
- Biblioteka Nauki