- Tytuł:
- The forcing geodetic number of a graph
- Autorzy:
-
Chartrand, Gary
Zhang, Ping - Powiązania:
- https://bibliotekanauki.pl/articles/744241.pdf
- Data publikacji:
- 1999
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
geodetic set
geodetic number
forcing geodetic number - Opis:
- For two vertices u and v of a graph G, the set I(u, v) consists of all vertices lying on some u-v geodesic in G. If S is a set of vertices of G, then I(S) is the union of all sets I(u,v) for u, v ∈ S. A set S is a geodetic set if I(S) = V(G). A minimum geodetic set is a geodetic set of minimum cardinality and this cardinality is the geodetic number g(G). A subset T of a minimum geodetic set S is called a forcing subset for S if S is the unique minimum geodetic set containing T. The forcing geodetic number $f_G(S)$ of S is the minimum cardinality among the forcing subsets of S, and the forcing geodetic number f(G) of G is the minimum forcing geodetic number among all minimum geodetic sets of G. The forcing geodetic numbers of several classes of graphs are determined. For every graph G, f(G) ≤ g(G). It is shown that for all integers a, b with 0 ≤ a ≤ b, a connected graph G such that f(G) = a and g(G) = b exists if and only if (a,b) ∉ {(1,1),(2,2)}.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 1999, 19, 1; 45-58
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki