For a connected graph G = (V,E), a set W ⊆ V is called a Steiner set of G if every vertex of G is contained in a Steiner W-tree of G. The Steiner number s(G) of G is the minimum cardinality of its Steiner sets and any Steiner set of cardinality s(G) is a minimum Steiner set of G. For a minimum Steiner set W of G, a subset T ⊆ W is called a forcing subset for W if W is the unique minimum Steiner set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The forcing Steiner number of W, denoted by fₛ(W), is the cardinality of a minimum forcing subset of W. The forcing Steiner number of G, denoted by fₛ(G), is fₛ(G) = min{fₛ(W)}, where the minimum is taken over all minimum Steiner sets W in G. The geodetic number g(G) and the forcing geodetic number f(G) of a graph G are defined in [2]. It is proved in [6] that there is no relationship between the geodetic number and the Steiner number of a graph so that there is no relationship between the forcing geodetic number and the forcing Steiner number of a graph. We give realization results for various possibilities of these four parameters.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00