Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "failure prediction" wg kryterium: Temat


Tytuł:
Being an outlier: a company non-prosperity sign?
Autorzy:
Svabova, Lucia
Durica, Marek
Powiązania:
https://bibliotekanauki.pl/articles/22446412.pdf
Data publikacji:
2019
Wydawca:
Instytut Badań Gospodarczych
Tematy:
bankruptcy prediction models
financial ratios
failure prediction
financial distress
Opis:
Research background: The state of financial distress or imminent bankruptcy are very difficult situations that the management of every company wants to avoid. For these reasons, prediction of company bankruptcy or financial distress has been recently in a focus of economists and scientists in many countries over the world. Purpose of the article: Various financial indicators, mostly financial ratios, are usually used to predict the financial distress. In order to create a strong prediction model and a statistically significant prediction of bankruptcy, it is advisable to use a deep statistical analysis of the data. In this paper, we analysed the real financial ratios of Slovak companies from the year 2017. In the phase of data preparation for further analysis, we checked the existence of outliers and found that there are some companies that are multivariate outliers because are significantly different from other companies in the database. Thus, we deeply focused on these outlying companies and analysed whether to be an outlier is a sign of financial distress. Methods: We analysed whether there are much more non-prosperous companies in the set of outlier companies and if their financial indicators are significantly different from those of the prosperous companies. For these analyses, we used testing of the statistical hypotheses, such as the test for equality of means and chi-square test. Findings & Value added: The ratio of non-prosperous companies between the outliers is significantly higher than 50 % and the attributes of non-prosperity and being an outlier are dependent. The means of almost all financial ratios of prosperous and non-prosperous companies among outliers are significantly different.
Źródło:
Equilibrium. Quarterly Journal of Economics and Economic Policy; 2019, 14, 2; 359-375
1689-765X
2353-3293
Pojawia się w:
Equilibrium. Quarterly Journal of Economics and Economic Policy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A genetic fuzzy approach to estimate operation time of transport device
Autorzy:
Smoczek, J.
Szpytko, J.
Powiązania:
https://bibliotekanauki.pl/articles/247484.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
failure prediction
fuzzy genetic system
material handling system
Opis:
The classic approach to evaluate the probability that an operational system is capable to operate satisfactorily and successfully perform the formulated tasks is based on availability that is coefficient which is determined based on the history of down-time and up-time occurring, while the risk-degree of down-time occurring strongly depends on the actual operational state of a system. The intelligence computational methods enable to create the diagnosis tools that allow to formulate the prognosis of operating time of a system and predict of failure occurring based on the past and actual information about system's operational state, especially genetic fuzzy systems (GFSs) that combine fuzzy approximate reasoning and capability to learn and adaptation. The paper presents the fuzzy rule-based inference system used to predict the operating time of exploitation system according to the specified operational conditions. The proposed algorithm was used to design the fuzzy model applied to estimate the operating time of a system between the actual time and predicted time of the next failure occurring under the stated operational parameters. The fuzzy system allows to prognoses the time of the predicted failure based on the operational parameters which are used to evaluate the actual operational state of the system. The attention in the paper is focused on the evolutionary computational techniques applied to design the fuzzy inference system. The paper proposes the genetic algorithm based on the Pittsburgh method and real-valued chromosomes used to optimize the knowledge base and parameters of antecedents and conclusions of the Takagi-Sugeno-Kang (TSK) fuzzy implications. The paper is the contribution to the GFSs, which aim is to find an appropriate balance between accuracy and interpretability, and also contribution to the research field on the diagnosis methods based on soft computing techniques. The evolutionary algorithm was tested for designing the fuzzy operating time predictor of material handling device.
Źródło:
Journal of KONES; 2011, 18, 4; 601-608
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The genetic fuzzy based proactive maintenance of a technical object
Autorzy:
Smoczek, J.
Szpytko, J.
Powiązania:
https://bibliotekanauki.pl/articles/246817.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
proactive maintenance
failure prediction
fuzzy logic
genetic algorithm
Opis:
The proactive maintenance is an effective approach to enhance the system availability through real time monitoring the current state of a system. The key part of this method is forecasting the nonoperational states for advanced warning of the failure possibility that can bring the attention of machines operators and maintenance personnel to impending danger facilitate planning preventive and corrective operations, and resources managing as well. The paper presents the HMI/SCADA-type application used to support decision-making process. The proposed approach to proactive maintenance is based on forecasting the remaining useful life of device equipment and delivering the user-defined maintenance strategy developed during system operation. The HMI/SCADA application is used to collect data in form of failures history, changes of operational conditions and performances of a monitored process between failures, as well as heuristic knowledge about process created by experienced user. The data history is used to design the predictive fuzzy models of time between failures of system equipment. The fuzzy predictive models are designed using the genetic algorithm applied to optimize the fuzzy partitions covering the training data examples, as well as to identify fuzzy predictive patterns represented by a set of rules in the knowledge base. The evolutionary learning strategy, which has been proposed in this paper, provides the effective reproduction techniques for searching the solution space with respect to optimization of knowledge base and membership functions according to the fitness function expressed as a ratio of compatibility of fuzzy partitions with data examples to root mean squares error. The proposed application was created and tested on the laboratory stand for monitoring the availability of the overhead travelling crane.
Źródło:
Journal of KONES; 2012, 19, 3; 399-405
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Towards a High Reliable Enforcement of Safety Regulations - A Workflow Meta Data Model and Probabilistic Failure Management Approach
Autorzy:
Thimm, H. H.
Powiązania:
https://bibliotekanauki.pl/articles/136152.pdf
Data publikacji:
2016
Wydawca:
EEEIC International Barbara Leonowicz Szabłowska
Tematy:
Environmental Health and Safety
workflow management
workflows
failure detection
failure prediction
Opis:
Today’s companies are able to automate the enforcement of Environmental, Health and Safety (EH&S) duties through the use of workflow management technology. This approach requires to specify activities that are combined to workflow models for EH&S enforcement duties. In order to meet given safety regulations these activities are to be completed correctly and within given deadlines. Otherwise, activity failures emerge which may lead to breaches against safety regulations. A novel domain-specific workflow meta data model is proposed. The model enables a system to detect and predict activity failures through the use of data about the company, failure statistics, and activity proxies. Since the detection and prediction methods are based on the evaluation of constraints specified on EH&S regulations, a system approach is proposed that builds on the integration of a Workflow Management System (WMS) with an EH&S Compliance Information System. Main principles of the failure detection and prediction are described. For EH&S managers the system shall provide insights into the current failure situation. This can help to prevent and mitigate critical situations such as safety enforcement measures that are behind their deadlines. As a result a more reliable enforcement of safety regulations can be achieved.
Źródło:
Transactions on Environment and Electrical Engineering; 2016, 1, 4; 19-28
2450-5730
Pojawia się w:
Transactions on Environment and Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnosing corporate stability using grammatical evolution
Autorzy:
Brabazon, A.
O'Neill, M.
Powiązania:
https://bibliotekanauki.pl/articles/907637.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
ewolucja gramatyczna
prognozowanie awarii
mapowanie procesu
grammatical evolution
corporate failure prediction
mapping process
Opis:
Grammatical Evolution (GE) is a novel data-driven, model-induction tool, inspired by the biological gene-to-protein mapping process. This study provides an introduction to GE, and demonstrates the methodology by applying it to construct a series of models for the prediction of bankruptcy, employing information drawn from financial statements. Unlike prior studies in this domain, the raw financial information is not preprocessed into pre-determined financial ratios. Instead, the ratios to be incorporated into the classification rule are evolved from the raw financial data. This allows the creation and subsequent evolution of alternative ratio-based representations of the financial data. A sample of 178 publicly quoted, US firms, drawn from the period 1991 to 2000 are used to train and test the model. The best evolved model correctly classified 86 (77)% of the firms in the in-sample training set (out-of-sample validation set), one year prior to failure.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2004, 14, 3; 363-374
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The use of stationary tests for analysis of monitored residual processes
Wykorzystanie testów stacjonarności do analizy monitorowanych procesów resztkowych
Autorzy:
Kosicka, E.
Kozłowski, E.
Mazurkiewicz, D.
Powiązania:
https://bibliotekanauki.pl/articles/1365913.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
failure prediction
maintenance
stationary tests
ADF
KPSS
predykcja awarii
utrzymanie ruchu
testy stacjonarności
Opis:
Sustaining high operational efficiency of a machine park requires the use of state-of-art solutions that support both monitoring of residual processes and performing thorough analysis of thereby collected data. What meets the needs of entrepreneurs who strive for high reliability of technological infrastructure is a modern approach to maintenance prediction. The literature of the subject offers numerous studies presenting the use of various statistical models for time series prediction. The objective of this paper is to verify whether tests used in econometrics such as the augmented Dickey-Fuller test and the Kwiatkowski-Phillips-Schmidt-Shin test are suitable for failure prediction. The simulations were performed for one diagnostic parameter, i.e. temperature.
Utrzymanie wysokiego poziomu efektywności eksploatacyjnej parku maszynowego wymaga stosowania nowoczesnych rozwiązań wspierających monitorowanie procesów resztkowych i poddawania szczegółowej analizie uzyskanych w ten sposób informacji. Naprzeciw oczekiwaniom przedsiębiorców dotyczących utrzymywania wysokiego poziomu niezawodności infrastruktury technicznej wychodzi nowoczesne podejście w obszarze gospodarki remontowo-konserwacyjnej, jakim jest predyktywne utrzymanie ruchu. W literaturze przedmiotu wielokrotnie prezentowano wykorzystanie różnych modeli statystycznych pozwalających na prognozowanie wartości szeregów czasowych. Celem niniejszej pracy było sprawdzenie czy stosowany w ekonometrii rozszerzony test Dickeya-Fullera oraz test Kwiatkowskiego, Phillipsa, Schmidta i Shina mogą zostać użyte do predykcji zdarzeń niepożądanych jakimi są awarie. Symulację przeprowadzono dla wartości jednego parametru diagnostycznego jakim była temperatura.
Źródło:
Eksploatacja i Niezawodność; 2015, 17, 4; 604-609
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modele oceny zagrożenia przedsiębiorstwa upadłością jako narzędzie diagnozy stanu finansowego spółek rynku kapitałowego
Bankruptcy risk assessment models as a tool for diagnosing the financial condition of capital market companies
Autorzy:
Kopczyński, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/1064877.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Księgowych w Polsce
Tematy:
financial situation
listed companies
corporate failure prediction
bankruptcy
multiple discriminant analysis models
financial crisis
Opis:
Purpose: The main purpose of this article is to examine the usefulness of multiple discriminant analysis models in assessing the financial condition of individual enterprises, the state of the economy, and its sectors. The study assessed the financial situation of Polish listed companies at the end of the global economic crisis that started in 2007. Methodology/approach: Seven discriminant functions were used to assess the actual changes in the finan-cial situation of listed companies during the period of 2009–2014. In order to diagnose the end of the crisis, the period in which countries emerged from the global economic crisis was taken into account. The study covered 175 Polish companies listed on the regulated market operated by the Warsaw Stock Exchange, whose standalone financial statements were used. These companies belong to 22 sectors of the economy. It was assumed that the number of companies at risk of bankruptcy should have decreased during this period. Findings: The study showed that it is difficult to determine when the crisis ended and stopped affecting Polish listed companies. Their financial condition gradually improved during the period 2013–2014. Multiple discriminant analysis models are useful in assessing the risk of bankruptcy, but the study results show that it is safer to use several models simultaneously and to eliminate outliers. Research limitations/implications: The discriminant models used in the study are suitable for conducting research on large populations within enterprises and can be used by state and financial institutions (including banks) and authorities in Poland to facilitate the conduct of economic statistics, forecasting economic situation, etc. Originality/value: In Poland, many studies have been carried out on the usefulness of multiple discrimi-nant analysis models for the purposes of forecasting the bankruptcy of individual enterprises. However, there are few studies devoted to assessing the usefulness of the models in conducting research on large populations within enterprises (i.e., assessing the state of the economy and its sectors). This research helps to explore and fill this research gap.
Źródło:
Zeszyty Teoretyczne Rachunkowości; 2020, 110(166); 31-75
1641-4381
2391-677X
Pojawia się w:
Zeszyty Teoretyczne Rachunkowości
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applying the Anticipatory Failure Determination at a Very Early Stage of a System’s Development: Overview and Case Study
Autorzy:
Chybowski, L.
Gawdzińska, K.
Souchkov, V.
Powiązania:
https://bibliotekanauki.pl/articles/2065020.pdf
Data publikacji:
2018
Wydawca:
STE GROUP
Tematy:
complex technical system
anticipatory failure determination
AFD
anticipatory failure analysis
AFA
failure prediction
Theory of Inventing Problem Solving
TRIZ
Opis:
Anticipatory Failure Determination (AFD) is a tool used in the TRIZ (Theory of Inventive Problem Solving) methodology. This article introduces its concept and describes the process of AFD in different versions of the method. The article presents the application of the AFD method at a very early state of a system’s development, i.e. its concept formulation stage, which corresponds to a technology readiness level (TRL) equal to 2. The system under analysis is a set of devices used to reduce displacement ship hull resistance. The system was modelled using functional analysis. An analysis of system resources was then carried out. Possible direct, indirect, and accident-related failures were identified. A multi-criteria analysis of the causes of system failures was conducted from which the top 10 potential failures were selected. Observations were made on the applicability of AFD in respect to systems not yet implemented.
Źródło:
Multidisciplinary Aspects of Production Engineering; 2018, 1, 1; 205--215
2545-2827
Pojawia się w:
Multidisciplinary Aspects of Production Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of different failure approaches in knotty wood
Autorzy:
Guindos, P.
Powiązania:
https://bibliotekanauki.pl/articles/52443.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Drewna
Tematy:
knotty wood
wood
comparison
failure prediction
knot
wood defect
multi-scale modelling
average stress approach
Opis:
This article presents and assesses 64 different ways for predicting the failure onset in knotty wooden beams. The aim is to provide engineers and modellers a generalview of how to evaluate the failure in wooden structural members with knots.The studied criteria included both the conventional point-based and average stress theories. Special attention was paid to the effect of the elements of the woodmesostructure, i.e. knots and fiber deviation, which can generate singular stress concentrations as notches or cracks would do in fracture mechanics. The case study consisted of predicting the failure onset of bending in structural wooden beams.A previously validated finite element model was used in order to compute the heterogeneous stresses. It was found that the knots caused considerable stress singularities so that the size of the average stress theory influenced the failure predictions by up to 23%. However, the variations generated by distinct phenomenologicalcriteria were in general much smaller. The application of the average stress theory in large stress integration volumes is strongly recommended when predicting the failure in wood members.
Źródło:
Drewno. Prace Naukowe. Doniesienia. Komunikaty; 2014, 57, 193
1644-3985
Pojawia się w:
Drewno. Prace Naukowe. Doniesienia. Komunikaty
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of data from measuring sensors for prediction in production process control systems
Analiza danych z czujników pomiarowych do predykcji w systemach kontroli procesów produkcyjnych
Autorzy:
Rymarczyk, Tomasz
Przysucha, Bartek
Kowalski, Marcin
Bednarczuk, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/408521.pdf
Data publikacji:
2019
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
Cox model
time to failure prediction
production control
intelligent platform
model Coxa
predykcja uszkodzeń
sterowanie produkcją
inteligentna platforma
Opis:
The article presents a solution based on a cyber-physical system in which data collected from measuring sensors was analysed for prediction in the production process control system. The presented technology was based on intelligent sensors as part of the solution for Industry 4.0. The main purpose of the work is to reduce data and select the appropriate covariate to optimise modelling of defects using the Cox model for a specific mechanical system. The reliability of machines and devices in the production process is a condition for ensuring continuity of production. Predicting damage, especially its movement, gives the ability to monitor the current state of the machine. In a broader perspective, this enables streamlining the production process, service planning or control. This ensures production continuity and optimal performance. The presented model is a regressive survival analysis model that allows you to calculate the probability of failure occurring over a given period of time.
Artykuł przedstawia rozwiązanie oparte na systemie cyber-fizycznym, w którym analizowano dane zbierane z czujników pomiarowych do predykcji w systemie kontroli procesów produkcyjnych. Przedstawiona technologia została oparta na inteligentnych czujnikach pomiarowych jako element rozwiązania dla Przemysłu 4.0. Głównym celem pracy jest redukcja danych i wybór odpowiedniego kowariantu w celu optymalizacji modelowania usterek za pomocą modelu Coxa dla konkretnego układu mechanicznego. Niezawodność pracy maszyn i urządzeń w procesie produkcyjnym jest warunkiem zapewnienia ciągłości produkcji. Przewidywanie uszkodzenia, a zwłaszcza jego momentu daje możliwość monitorowania bieżącego stanu maszyny. W szerszej perspektywie umożliwia to usprawnienie procesu produkcji, planowania serwisu, czy kontroli. Zapewnia to utrzymanie ciągłości produkcji i optymalnej jej wydajności. Przedstawiony model jest regresywnym modelem analizy przeżycia, który pozwala na obliczanie prawdopodobieństwa wystąpienia awarii w określonym czasie.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2019, 9, 4; 26-29
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies