Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ekstrakcja cech" wg kryterium: Temat


Tytuł:
Video-based technique for damaged spacers detections during power line inspections
Wizyjna technika detekcji uszkodzeń odstępników podczas inspekcji linii energetycznych
Autorzy:
Okarma, K.
Mazurek, P.
Powiązania:
https://bibliotekanauki.pl/articles/153215.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
odstępnik
ekstrakcja cech geometrycznych
detekcja uszkodzeń
spacer
geometrical features' extraction
fault detection
Opis:
In the paper a digital image processing algorithm useful for video-based analysis of power lines spacers' mechanical condition is proposed. For testing purposes the semi-synthetic images of some damaged typical spacers have been used but for the verification of the detection of spacers' location working properties the real images taken from the camera have been used. Presented method is based mainly on the geometrical features' extraction techniques and can be applied in the systems for the analysis of data acquired by e.g. aerial fly-by patrols.
W pracy zaproponowano algorytm cyfrowego przetwarzania obrazów użyteczny w analizie wideo uszkodzeń mechanicznych odstępników w liniach energetycznych. Do celów testowych zostały użyte półsyntetyczne obrazy uszkodzeń typowych odstępników, natomiast weryfikacja działania detekcji położenia odstępników została przeprowadzona w oparciu o obrazy rzeczywiste uzyskane z kamery. Proponowana metoda jest oparta głównie na technikach ekstrakcji cech geometrycznych i może być użyta w systemach automatycznej analizy danych uzyskiwanych np. podczas inspekcji lotniczych.
Źródło:
Pomiary Automatyka Kontrola; 2008, R. 54, nr 10, 10; 677-678
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research on communication emitter identification based on semi-supervised dimensionality reduction in complex electromagnetic environment
Autorzy:
Ge, Wei
Qi, Lin
Tong, Lin
Zhu, Jun
Zhang, Jing
Zhao, Dongyang
Li, Ke
Powiązania:
https://bibliotekanauki.pl/articles/27311449.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
communication emitter identification
feature extraction
dimensionality reduction
VMD
ESDA
variational mode decomposition
exponential semi-supervised discriminant analysis
identyfikacja emitera komunikacyjnego
ekstrakcja cech
redukcja wymiarowości
rozkład w trybie wariacyjnym
analiza dyskryminacyjna wykładnicza półnadzorowana
Opis:
The individual identification of communication emitters is a process of identifying different emitters based on the radio frequency fingerprint features extracted from the received signals. Due to the inherent non-linearity of the emitter power amplifier, the fingerprints provide distinguishing features for emitter identification. In this study, approximate entropy is introduced into variational mode decomposition, whose features performed in each mode which is decomposed from the reconstructed signal are extracted while the local minimum removal method is used to filter out the noise mode to improve SNR. We proposed a semi-supervised dimensionality reduction method named exponential semi-supervised discriminant analysis in order to reduce the high-dimensional feature vectors of the signals, and LightGBM is applied to build a classifier for communication emitter identification. The experimental results show that the method performs better than the state-of-the-art individual communication emitter identification technology for the steady signal data set of radio stations with the same plant, batch and model.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 4; art. no. e145766
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research on bispectrum analysis of secondary feature for vehicle exterior noise based on nonnegative tucker3 decomposition
Badania nad analizą bispektrum cech drugorzędnych hałasu zewnętrznego pojazdów w oparciu o nieujemną dekompozycję Tuckera3
Autorzy:
Wang, H.
Deng, G.
Li, Q.
Kang, Q.
Powiązania:
https://bibliotekanauki.pl/articles/301586.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
feature extraction
vehicle exterior noise
NTD
updating algorithm
ekstrakcja cech
hałas zewnętrzny pojazdu
algorytm aktualizacyjny
Opis:
Nowadays, analysis of external vehicle noise has become more and more difficult for NVH (noise vibration and harshness) engineer to find out the fault among the exhaust system when some significant features are masked by the jamming signals, especially in the case of the vibration noise associating to the bodywork. New method is necessary to be explored and applied to decompose a high-order tensor and extract the useful features (also known as secondary features in this paper). Nonnegative Tucker3 decomposition (NTD) is proposed and applied into secondary feature extraction for its high efficiency of decomposition and well property of physical architecture, which serves as fault diagnosis of exhaust system for an automobile car. Furthermore, updating algorithm conjugating with Newton-Gaussian gradient decent is utilized to solve the problem of overfitting, which occurs abnormally on traditional iterative method of NTD. Extensive experimen results show the bispectrum of secondary features can not only exceedingly interpret the state of vehicle exterior noise, but also be benefit to observe the abnormal frequency of some important features masked before. Meanwhile, the overwhelming performance of NTD algorithm is verified more effective under the same condition, comparing with other traditional methods both at the deviation of successive relative error and the computation time.
Obecnie inżynierowie NVH (zajmujący się problematyką hałasu, drgań i uciążliwości akustycznych) napotykają na coraz większe trudności przy analizie hałasu zewnętrznego pojazdów wynikające z faktu, że istotne cechy związane z nieprawidłowościami układu wydechowego są maskowane przez sygnały zakłócające, szczególnie hałas wibracyjny związany z pracą nadwozia. Niezbędna jest zatem nowa metoda, która pozwoli rozkładać tensory wysokiego rzędu i wyodrębniać przydatne cechy (zwane w tym artykule także cechami drugorzędnymi). Do ekstrakcji cech drugorzędnych wykorzystano w prezentowanej pracy metodę nieujemnej faktoryzacji tensorów znaną także jako nieujemna dekompozycja Tuckera 3 (NTD) , która cechuje się wysoką efektywnością dekompozycji i może być wykorzystywana w diagnostyce uszkodzeń układu wydechowego samochodów. Problem nadmiernego dopasowania, który występuje w tradycyjnej metodzie iteracyjnej NTD rozwiązano przy pomocy algorytmu aktualizacyjnego sprzężonego z gradientem prostym Newtona-Gaussa. Wyniki doświadczeń pokazują, że bispektrum cech drugorzędnych nie tylko pozwala doskonale interpretować stan hałasu zewnętrznego pojazdu, ale również umożliwia wykrywanie wcześniej maskowanych nieprawidłowych częstotliwości odpowiadających niektórym ważnym cechom. Badania potwierdzają, że algorytmu NTD jest bardziej efektywny, w tych samych warunkach, w porównaniu z innymi tradycyjnymi metodami zarówno w zakresie odchyleń błędu względnego jak i czasu obliczeń.
Źródło:
Eksploatacja i Niezawodność; 2016, 18, 2; 291-298
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recognition of acoustic signals of induction motor using fft, smofs-10 and ISVM
Rozpoznawanie sygnałów akustycznich silnika indukcyjnego z zastosowaniem fft, smofs-10 i ISVM
Autorzy:
Głowacz, A.
Powiązania:
https://bibliotekanauki.pl/articles/1365918.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
acoustic signal
induction motor
feature extraction
classification
sygnał akustyczny
silnik indukcyjny
ekstrakcja cech
klasyfikacja
Opis:
A correct diagnosis of electrical circuits is very essential in industrial plants. An article deals with a recognition method of early fault detection of induction motor. The described approach is based on patterns recognition. Acoustic signals of specific induction motor are analyzed patterns. Acoustic signals include information about motor state. The analysis of the patterns was conducted for three states of induction motor using Fast Fourier Transform (FFT), shortened method of frequencies selection (SMoFS-10) and Linear Support Vector Machine (LSVM). The results of calculations suggest that the method is efficient and can be also used for diagnostic purposes.
Prawidłowa diagnostyka obwodów elektrycznych jest bardzo istotna w zakładach przemysłowych. Artykuł zajmuje się metodą rozpoznawania stanów przedawaryjnych silnika indukcyjnego. Opisane podejście jest oparte na rozpoznawaniu wzorców. Sygnały akustyczne określonego silnika indukcyjnego są badanymi wzorcami. Sygnały akustyczne zawierają informację o stanie silnika. Analiza wzorców została przeprowadzona dla trzech stanów silnika indukcyjnego używając FFT, skróconej metody wyboru częstotliwości (SMoFS-10) i liniowej maszyny wektorów wspierających (LSVM). Wyniki obliczeń sugerują, że metoda jest skuteczna i może być również zastosowana dla celów diagnostycznych.
Źródło:
Eksploatacja i Niezawodność; 2015, 17, 4; 569-574
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Parametric analysis of pilot voice signals in Parkinson’s disease diagnostics
Analiza parametryczna pilotażowych sygnałów głosu w diagnostyce choroby Parkinsona
Autorzy:
Majda-Zdancewicz, Ewelina
Potulska-Chromik, Anna
Nojszewska, Monika
Kostera-Pruszczyk, Anna
Powiązania:
https://bibliotekanauki.pl/articles/2176245.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Technologiczno-Humanistyczny im. Kazimierza Pułaskiego w Radomiu
Tematy:
features extraction
speech signal analysis
Parkinson's disease
analiza sygnału mowy
choroba Parkinsona
ekstrakcja cech
Opis:
Parkinson's disease (PD) is a neurodegenerative disease of the central nervous system (CNS) characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The article describes an analysis of pilot voice signal analysis in Parkinson's disease diagnostics. Frequency domain signal analysis was mainly used to assess the state of a patient's voice apparatus in order to support PD diagnostics. The recordings covered uttering the “a” sound at least twice with extended phonation. The research utilized real recordings acquired in the Department of Neurology at the Medical University of Warsaw, Poland. Spectral speech signal coefficients may be determined based on different defined frequency scales. The authors used four frequency scales: linear, Mel, Bark and ERB . Spectral descriptors have been defined for each scales which are widely used in machine and deep learning applications, and perceptual analysis. The usefulness of extracted features was assessed taking into account various methods. The discriminatory ability of individual coefficients was evaluated using the Fisher coefficient and LDA technique.. The results of numerical experiments have shown different efficiencies of the proposed descriptors using different frequencies scales.
Choroba Parkinsona (PD) jest neurodegeneracyjną chorobą ośrodkowego układu nerwowego charakteryzującą się postępującą utratą neuronów dopaminergicznych w istocie czarnej. W artykule opisano analizę rejestracji pilotażowych sygnałów głosu w diagnostyce choroby Parkinsona. Rejestracji podlegało co najmniej dwukrotnie wypowiadanie głoski „a” o przedłużonej fonacji. Do badań wykorzystano nagrania zarejestrowane w Katedrze i Klinice Neurologii Warszawskiego Uniwersytetu Medycznego w Warszawie. Do oceny stanu aparatu głosu pacjenta celem wsparcia diagnostyki choroby Parkinsona wykorzystano w głównej mierze analizę sygnału w dziedzinie częstotliwości. Autorzy zastosowali cztery skale częstości: liniową, skalę typu Mel, skalę typu Bark oraz skalę typu ERB. Dla każdej z tych skali zdefiniowali deskryptory spektralne szeroko stosowane w aplikacjach uczenia maszynowego i głębokiego uczenia się oraz w analizie percepcyjnej. Ocena przydatności wyekstrahowanych cech została zrealizowana z uwzględnieniem różnych metod. Wykorzystano metodą oceny jakości cech przy użyciu współczynnika istotności Fischera oraz analizę LDA. Wyniki eksperymentów numerycznych wykazały różne wydajności proponowanych deskryptorów przy użyciu różnych skal częstości.
Źródło:
Journal of Automation, Electronics and Electrical Engineering; 2022, 4, 1; 21--28
2658-2058
2719-2954
Pojawia się w:
Journal of Automation, Electronics and Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optical character recognition using artifical inelligence technologies
Optyczne rozpoznawanie znaków z użyciem sztucznej inteligencji
Autorzy:
Musiał, A.
Szczepaniak, P.
Powiązania:
https://bibliotekanauki.pl/articles/408862.pdf
Data publikacji:
2014
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
character recognition
artificial intelligence
feature extraction
clustering algorithms
rozpoznawanie znaków
sztuczna inteligencja
ekstrakcja cech
algorytmy klastrowania
Opis:
The article represents results of the research of an Optical Character Recognition system. Proposed OCR system is able to convert a raster image into the text string, which represents the text shown on the input image. The main innovation is the fact that the system was created without following any strict rules. It was more an innovative research rather than simple programming using ready guidelines.
Celem projektu opisywanego w artykule było przygotowanie działającego systemu do optycznego rozpoznawania znaków, tj. zdolnego przekształcić rastrowy obraz wejściowy w łańcuch znaków odpowiadający zapisanemu tekstowi na obrazie. Nowością jest m.in. fakt wykonania tego systemu bez podążania za z góry znaną architekturą aplikacji, a przygotowanie go w sposób bardziej doświadczalny, czyli wykorzystując podejście nowatorskie.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2014, 2; 41-44
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie i optymalizacja generatora cech dla systemu rozpoznawania mówcy
Modeling and optimization of features generator for speaker recognition systems
Autorzy:
Majda, E.
Dobrowolski, A. P.
Smólski, B. L.
Powiązania:
https://bibliotekanauki.pl/articles/209417.pdf
Data publikacji:
2012
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
automatyczne rozpoznawanie mówcy
analiza cepstralna
ekstrakcja cech
selekcja cech
analiza składników głównych
automatic speaker recognition
cepstral analysis
features extraction
features selection
principal component analysis
Opis:
W pracy przedstawiono zagadnienia związane z modelowaniem i optymalizacją generatora cech dla systemu automatycznego rozpoznawania mówcy (ang. Automatic Speaker Recognition - ASR). Etap generacji cech (parametryzacji sygnału mowy) jest fundamentalny w tego typu systemach, z uwagi na fakt, że unikatowy wektor cech ma decydujące znaczenie w procesie rozpoznawania. Zadaniem generatora cech jest opisanie sygnału mowy za pomocą możliwie mało licznego zbioru deskryptorów, bez utraty informacji istotnych z punktu widzenia rozpoznawania mówcy. Ponadto parametryzacja powinna wykazywać odporność na warunki akustyczne i techniczne rejestracji oraz na zawartość lingwistyczną rejestrowanego materiału. Badania przedstawione w referacie koncentrowały się przede wszystkim na wielokryterialnej optymalizacji wybranych parametrów generatora cech opartego na analizie cepstralnej, uwzględniającej dodatkowo selekcję cech. Oceny otrzymanych wyników dokonano w oparciu o analizę składników głównych (ang. Principal Component Analysis - PCA) zbioru deskryptorów wyznaczonych dla próbek głosu pochodzących od 24 mówców.
The paper presents issues related to modeling and optimization of the features generator for the speaker recognition system (ASR - Automatic Speakers Recognition). Parameterization's stage of the speech signal (features generation) is fundamental in this type of systems, due to the fact that the unique vector of features is crucial in the process of recognition. The task is to describe the speech signal using descriptors as little as possible, without loss of relevant information to the speaker recognition. In addition, parametrization should have robust to acoustic and technical registration conditions and the recorded linguistic material. The research presented in this paper is focused primarily on the multicriteria optimization of selected parameters of the features generator based on cepstral analysis, additionally allowing features selection. Finally, evaluation of the results was based on the analysis of main components, a set of descriptors for the samples voice acquired from 24 speakers.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2012, 61, 4; 153-168
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda ekstrakcji cech orientowana na sprzętową realizację w zadaniach rozpoznawania obrazów
Feature extraction method directed on hardware realization for image recognition tasks
Autorzy:
Kukharev, G.
Sałuda, R.
Mikłasz, M.
Kawka, G.
Powiązania:
https://bibliotekanauki.pl/articles/151790.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
rozpoznawanie twarzy
LIFE
ekstrakcja cech
feature extractor
face recognition
Opis:
Rozpoznawanie obrazów to zadanie realizowane najczęściej przez skomplikowane i złożone metody. Jednak wykorzystanie zestawu prostych i szybkich metod pozwala na dorównanie skutecznością systemom używającym skomplikowanych podejść. Rozwiązanie to ma dodatkowy plus - łatwość implementacji sprzętowej. W artykule przedstawiono podejście analizujące lokalną symetryczność obrazu, które pomimo swojej prostoty, wykazało się dużą skutecznością. Przeprowadzone eksperymenty pokazały, że omawiana metoda ekstrakcji cech z obrazu może mieć bezpośrednie zastosowanie w systemach rozpoznawania, a jej prostota pozwala na sprzętową realizację. Dodatkową zaletą prezentowanej metody jest jej inwariantność od oświetlenia twarzy. Dzięki temu istnieje możliwość znaczącej poprawy wydajności całego systemu rozpoznawania.
The paper presents the results of investigations concerning face recognition systems based on a simple, fast and efficient feature extractor method. It is based on analysis of the local image symmetry. An additional advantage of the described method is the fact that it is light invariant feature extractor - so it is called LIFE. This benefit (robust on the light conditions) makes it possible to use the method practically as the hardware implementation in real monitoring systems. The idea of LIFE operation is described in Section 2 of the paper. The performed experiments, presented in Section 3 show that LIFE is very efficient in comparison with other simple feature extractor methods - the results of recognition are given in Table 1. In spite of the method simplicity, the proposed approach proved high effectiveness which may be further increased by joining LIFE into a parallel structure with another simple feature extractor (it is described in Section 4). The presented feature extractor enables implementation in hardware system (simplicity and efficiency) such as cameras of the monitoring system. This idea is discussed in the conclusions.
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 8, 8; 563-565
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Linear optimization of multi-path routing in network on chips
Liniowa optymalizacja wielościeżkowego routingu w sieciach wewnątrzukładowych
Autorzy:
Dziurzański, P.
Mąka, T.
Powiązania:
https://bibliotekanauki.pl/articles/156579.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
sieci wewnątrzukładowe
routing wielościeżkowy
ekstrakcja cech
Network on Chip (NoC)
multipath routing
features extraction
Opis:
In this paper, a technique for determining required link band-width of a multi-path routing algorithm dedicated to Network on Chip (NoC) is presented. The proposed algorithm is based on the linear programming and allows us to avoid deadlocks and contentions in case of Tapeworm routing used for data-dominated streaming multimedia applications realized in Multi Processor Systems on Chip. The proposed approach is illustrated with an example of features extraction module for the Automatic Speech Recognition (ASR) system.
W artykule opisano technikę określania wymaganej przepustowości łączy sieci wewnątrzukładowej z routingiem wielościeżkowym. Zaproponowany algorytm bazuje na programowaniu liniowym i umożliwia unikanie blokad w routingu typu Tapeworm, wykorzystywanego dla multimedialnych aplikacji zdominowanych przez dane realizowanych w układach typu MPSoC. Autorski algorytm routingu Tapeworm dla niektórych aplikacji multimedialnych okazuje się być wydajniejszy od XY, powszechnie używanego algorytmu routingu w NoC. Zaproponowane podejście zostało zilustrowane przykładem modułu ekstrakcji cech w systemie automatycznego rozpoznawania mowy. Klasyczny diagram takiego modułu został przedstawiony na rys. 1. W celu określenia marszrut pomiędzy rdzeniami realizującymi funkcjonalności poszczególnych bloków tego modułu została zaadaptowana technika znana z tradycyjnych sieci komputerowych, opisana m.in. w [8]. W artykule zaproponowano sposób wyboru ścieżek między rdzeniem źródłowym i docelowym, opisano sposób określania ograniczeń, a także zaproponowano funkcję celu uwzględniającą długość ścieżki. Do wyszukiwania optymalnej przepustowości łączy wykorzystano algorytm przypominający wyszukiwanie binarne. Badania eksperymentalne, w ramach których zaimplementowano opisany moduł w języku SystemC, a także wykorzystano komercyjne narzędzie do rozwiązywania problemu programowania liniowego, potwierdzają skuteczność i efektywność opisywanego podejścia.
Źródło:
Pomiary Automatyka Kontrola; 2012, R. 58, nr 7, 7; 659-661
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja stanów przedkrytycznych
Classification of pre-critical states
Autorzy:
Topczewska, M.
Frischmuth, K.
Powiązania:
https://bibliotekanauki.pl/articles/154431.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
klasyfikacja
ekstrakcja cech
classification
feature extraction
Opis:
Praca zawiera przykład klasyfikacji danych rzeczywistych opisujących sygnały niekrytyczne, przedkrytyczne i krytyczne. Celem jest rozpoznanie stanów niebezpiecznych tak wcześnie jak to możliwe. Ze względu na brak separowalności liniowej danych w celu separacji klas użyto klasyfikacji hierarchicznej z cięciami za pomocą klasyfikatorów liniowych oraz z podejściem one-versus-rest z wyróżnioną klasą sygnałów bezpiecznych. W wyniku ośmiu cięć uzyskano ostateczny podział przestrzeni skutkujący odseparowaniem klasy sygnałów bezpiecznych od podejrzanych, tj. przedkrytycznych i krytycznych oraz dający najmniejszą liczbę błędnie sklasyfikowanych obiektów z klasy sygnałów niekrytycznych.
The paper presents an application of classification methods to time-continuous signals (1). Signals with values that exceed a certain critical maximum are called dangerous or critical, otherwise we speak about normal or routine operation of the system under consideration, Fig. 1. The problem is to recognize pre-critical states, i.e. states preceding the actual dangerous ones, and that as early as possible. False negative classifications may have very serious consequences, while false positive verdicts cause expensive but unnecessary counter-measures. As pre-processing, the input signals are characterized by a number of features, which form sequences of vector data, indexed by the cycle number (2). In a first stage, suspicious feature vectors are selected, from which in a second sweep unlikely candidates are removed. The focus of the present paper is this second stage, i.e. the distinction between actual pre-critical and the harmless routine states among the suspicious states, indicated in the first stage by a certain preliminary test. The choice of features and the logic behind the preliminary test are beyond our present scope. Let it suffice to say that the first step is a combination of Principal Component Analysis and some statistical test, and that it is very effective but unspecific in the application at hand.For the real-world data we used to develop the method, it turned out that the obtained feature vectors were linearly non-separable. For that reason a hierarchical approach was applied, where in several steps linear cuts (4,5) of the one-versus-rest type were performed in order to single out the true pre-critical states. For the example under consideration, in eight iterations separation between pre-critical and non-pre-critical ones was achieved. We succeeded to keep the number of wrong negatives at zero while reducing the number of wrong positives to a fraction of the starting value, established by the preliminary test, Fig. 3, 4, 5. The final sensitivity, for the given data set, is 100%, and the achieved specificity is at 93.15%. Numerical experiments, using nonlinear classifiers on much larger data sets, are under way. The present aim is to find an optimal set of features and a one-step criterion which further improves the quality of the classification.
Źródło:
Pomiary Automatyka Kontrola; 2012, R. 58, nr 10, 10; 872-875
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Image retrieval based on hierarchical Gabor filters
Autorzy:
Andrysiak, T.
Choraś, M.
Powiązania:
https://bibliotekanauki.pl/articles/908448.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
filtr Gabora
pobieranie obrazu
ekstrakcja cech
reprezentacja hierarchiczna
Gabor filters
image retrieval
texture feature extraction
hierarchical representation
Opis:
Content Based Image Retrieval (CBIR) is now a widely investigated issue that aims at allowing users of multimedia information systems to automatically retrieve images coherent with a sample image. A way to achieve this goal is the computation of image features such as the color, texture, shape, and position of objects within images, and the use of those features as query terms. We propose to use Gabor filtration properties in order to find such appropriate features. The article presents multichannel Gabor filtering and a hierarchical image representation. Then a salient (characteristic) point detection algorithm is presented so that texture parameters are computed only in a neighborhood of salient points. We use Gabor texture features as image content descriptors and efficiently emply them to retrieve images.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 4; 471-480
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid methodology of degradation feature extraction for bearing prognostics
Metodyka hybrydowa ekstrakcji cech degradacji do zastosowań w prognozowaniu czasu życia łożysk
Autorzy:
Gu, H.
Zhao, J.
Zhang, X.
Powiązania:
https://bibliotekanauki.pl/articles/302055.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
ekstrakcja cech
degradacja
sygnał
łożysko
feature extraction
degradation
signal
bearing
Opis:
Hybrid methodology of degradation feature extraction was presented which may enable prediction of remaining useful life of a product. In this methodology, firstly, the signal was de-noised by wavelet analysis. Then the autoregressive model was used to remove the discrete frequencies from de-noised signal. Further, the residual signal which mainly contained impulsive fault signal was enhanced by minimum entropy deconvolution filter. The kurtosis was extracted which was taken as the feature for prognostics. At last, the empirical mode decomposition was used to reduce fluctuation of feature value and to extract the trend content. A case study was presented to verify the effectiveness of the proposed method.
Przedstawiono hybrydową metodę ekstrakcji cech degradacji, która umożliwia przewidywanie pozostałego okresu użytkowania produktu. W tej metodyce, sygnał został najpierw odfiltrowany z wykorzystaniem analizy falkowej. Następnie, za pomocą modelu autoregresyjnego usunięto z pozbawionego szumów sygnału częstotliwości dyskretne. W dalszej kolejności, sygnał resztkowy, który zawierał głównie impulsowy sygnał uszkodzenia został wzmocniony z zastosowaniem filtru dekonwolucji minimum entropii. Obliczono kurtozę, którą przyjęto jako cechę w procesie prognozowania. Na koniec, zastosowano empiryczną dekompozycję sygnału (EMD) w celu zmniejszenia wahań wartości cechy oraz w celu ekstrakcji trendu. Studium przypadku demonstruje efektywność proponowanej metody.
Źródło:
Eksploatacja i Niezawodność; 2013, 15, 2; 195-201
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hardware acceleration of data classifiers for multimedia processing tasks
Sprzętowe przyspieszenie klasyfikacji danych multimedialnych
Autorzy:
Dziurzański, P.
Mąka, T.
Forczmański, P.
Powiązania:
https://bibliotekanauki.pl/articles/153826.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
feature extraction
multimedia data classification
Network on Chip (NoC)
ImpulseC
ekstrakcja cech
klasyfikacja danych multimedialnych
sieci wewnątrzukładowe
Opis:
In this paper, experimental results of a proposed hardware acceleration of feature extraction and data classifiers for multimedia are presented. This hardware is based on multi-core architecture connected with a mesh Network on Chip (NoC). The cores in the system execute both data classifiers and feature extraction for audio and image data. Using various meta heuristics the system is optimized with regards to different data communication criteria. The system was implemented on an FPGA platform with use of ImpulseC hardware description language.
W artykule zostały zeprezentowane wyniki eksperymentalne dotyczące sprzętowego przyspieszania ekstrakcji cech i klasyfikacji danych multimedialnych. Opracowane rozwiązanie sprzętowe bazuje na architekturze wielordzeniowej, w której każdy blok realizuje przypisaną mu statycznie funkcjonalność. Rdzenie połączone są ze sobą za pomocą sieci wewnątrzukładowej (ang. Network on Chip, NoC) o architekturze siatki. W artykule opisano pokrótce autorskie oprogramowanie służące do generowania kodu sieci wewnątrzukładowej. Graficzny interfejs użytkownika został zaprezentowany na rys. 1. Narzędzie ma za zadanie dokonywać odwzorowania wybranych funkcjonalności do poszczególnych rdzeni z wykorzystaniem takich meta-heurystyk jak algorytmy genetyczne, symulowane wyżarzanie, poszukiwanie losowe czy algorytmu gradientowego. Jako kryterium optymalizacji można wybrać minimalizację całkowitego przesyłu danych, minimalizację maksymalnej liczby danych transmitowanych przez pojedyncze łącze, a także minimalizację odchylenia standardowego rozmiaru strumieni transmitowanych przez poszczególne łącza. Przykładowe wyniki optymalizacji losowej dla sieci wewnątrzukładowej zostały przedstawione w tab. 1, natomiast wyniki optymalizacji dla sieci wewnątrzukładowej wykorzystującej inne podejścia - w tab. 2. Dla systemu zoptymalizowanego w ten sposób został wygnerowany opisujący go kod w języku ImpulseC, który następnie posłużył do syntezy sprzętowej na układzie FPGA z rodziny Xilinx Virtex 5. Zajętość układu XC5VSX50T dla trzech wykorzystanych klasyfikatorów została przedstawiona na rys. 3. Z kolei tab. 3 przedstawia liczbę zasobów wykorzystanych przez narzędzie syntezy wysokiego poziomu dla tych klasyfikatorów. Technika przedstawiona w publikacji umożliwia określenie warunków i ograniczeń implementacji sprzętowej systemu służącego klasyfikacji danych multimedialnych.
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 6, 6; 382-384
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Grain size determination and classification using adaptive image segmentation with grain shape information for milling quality evaluation
Określenie rozmiaru ziarna i klasyfikacja z użyciem adaptacyjnej segmentacji obrazu i informacji o kształcie dla oceny jakości mielenia
Autorzy:
Budzan, S.
Pawełczyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/328384.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
grain classification
particle analysis
image segmentation
feature extraction
klasyfikacja ziaren
analiza
wielkość ziaren
segmentacja obrazów
ekstrakcja cech
Opis:
In this paper, authors described methods of material granularity evaluation and a novel method for grain size determination with inline electromagnetic mill device diagnostics. The milling process quality evaluation can be carried out with vibration measurements, analysis of the milling material images or well-known screening machines. The method proposed in this paper is developed to the online examination of the milled product during the milling process using real-time digital images. In this paper, authors concentrated their work on copper ore milling process. Determination of the total number of the grain, the size of each grain, also the classification of the grains are the main goal of the developed method. In the proposed method the vision camera with lightning mounted at two assumed angles has been used. The detection of the grains has been based on an adaptive segmentation algorithm, improved with distance transform to enhance grains detection. The information about particles shape and context is used to optimize the grain classification process in the next step. The final classification is based on the rule-based method with defined particle shape and size parameters.
W pracy autorzy opisali metody oceny uziarnienia materiału i nową metodę określania wielkości ziaren z jednoczesną diagnostyką pracy młyna elektromagnetycznego. Ocena jakości mielenia może być realizowana na kilka sposobów, tj. poprzez pomiar drgań, analizę obrazów materiału zmielonego, lub wykorzystanie matryc przesiewowych. Proces mielenia jest procesem obciążonym znacznym zużyciem energii, dlatego proces diagnostyki powinien być wykonywany z dużą efektywnością. Metoda zaproponowana w niniejszym artykule opiera się na badaniu mielonego produktu podczas procesu mielenia przy użyciu analizy obrazów cyfrowych w czasie rzeczywistym. Głównym celem opracowanej metody jest określenie całkowitej liczby ziaren, wielkości ziaren, jak i klasyfikacja ziaren. W zaproponowanej metodzie wykorzystano akwizycję obrazów z kamery przy oświetlaniu badanych próbek pod kątem, co pozwala zwiększyć liczbę wykrywanych ziaren. Detekcja ziaren bazuje na metodzie segmentacji adaptacyjnej rozszerzonej o analizę map odległościowych w celu poprawienia jakości i liczby wykrytych ziaren. Informacje na temat kształtu ziaren są wykorzystywane w celu optymalizacji procesu klasyfikacji ziaren. Ostateczna klasyfikacja opiera się na metodzie bazującej na regułach, w których określono zależności dla różnych parametrów kształtu i rozmiaru ziaren.
Źródło:
Diagnostyka; 2018, 19, 1; 41-48
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fusing laser and vision data for a perceptually rich environment description
Opis otoczenia na podstawie danych z sensorów laserowych i wizyjnych
Autorzy:
Skrzypczyński, P.
Powiązania:
https://bibliotekanauki.pl/articles/257108.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
robot mobilny
nawigacja
system wizyjny
ekstrakcja cech
mobile robot
navigation
computer vision
feature extraction
Opis:
In this paper we, discuss methods to increase the discriminative properties of the laser-based geometric landmarks used in simultaneous localisation and mapping by employing monocular vision data. Vertical edges extracted from images help to estimate the length of the line segments, which are only partially observed. Salient visual features, which defy simple geometric interpretation, are handled by the scale invariant feature transform method. These different types of photometric features are aggregated together with the basic 2D line segments extracted from the laser scanner data into the Perceptually Rich Segments.
W pracy przedstawiono metody poprawiające rozróżnialność obiektów geometrycznych wyodrębnionych z danych uzyskanych ze skanera laserowego i wykorzystywanych w systemie jednoczesnej samolokalizacji i budowy mapy otoczenia robota. Założono, że robot porusza się w środowisku zbudowanym przez człowieka, w którym dominują pionowe płaszczyzny (ściany). Poprawę rozróżnialności obiektów uzyskano dzięki wykorzystaniu danych z monookularowego systemu wizyjnego robota. Krawędzie pionowe wyodrębnione z obrazów umożliwiają prawidłową estymację długości odcinków 2D odtworzonych uprzednio na podstawie danych ze skanera laserowego. Fotometryczne cechy znaczące wyodrębniane są z obrazów i opisywane za pomocą metody Scale Invariant Feature Transform (SIFT). Uzyskane wektory parametrów osadzane są następnie w "ramach" tworzonych przez odcinki poziome oraz krawędzie pionowe. Powstają w ten sposób obiekty nowego typu - PRS (ang. Perceptually Rich Segment). Zaprezentowano wyniki eksperymentów dotyczących wyodrębniania i dopasowywania do siebie wektorów SIFT oraz wstępne wyniki dotyczące budowy modelu otoczenia z użyciem obiektów PRS.
Źródło:
Problemy Eksploatacji; 2008, 3; 57-67
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies