Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Research on communication emitter identification based on semi-supervised dimensionality reduction in complex electromagnetic environment

Tytuł:
Research on communication emitter identification based on semi-supervised dimensionality reduction in complex electromagnetic environment
Autorzy:
Ge, Wei
Qi, Lin
Tong, Lin
Zhu, Jun
Zhang, Jing
Zhao, Dongyang
Li, Ke
Powiązania:
https://bibliotekanauki.pl/articles/27311449.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
communication emitter identification
feature extraction
dimensionality reduction
VMD
ESDA
variational mode decomposition
exponential semi-supervised discriminant analysis
identyfikacja emitera komunikacyjnego
ekstrakcja cech
redukcja wymiarowości
rozkład w trybie wariacyjnym
analiza dyskryminacyjna wykładnicza półnadzorowana
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 4; art. no. e145766
0239-7528
Język:
angielski
Prawa:
CC BY: Creative Commons Uznanie autorstwa 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The individual identification of communication emitters is a process of identifying different emitters based on the radio frequency fingerprint features extracted from the received signals. Due to the inherent non-linearity of the emitter power amplifier, the fingerprints provide distinguishing features for emitter identification. In this study, approximate entropy is introduced into variational mode decomposition, whose features performed in each mode which is decomposed from the reconstructed signal are extracted while the local minimum removal method is used to filter out the noise mode to improve SNR. We proposed a semi-supervised dimensionality reduction method named exponential semi-supervised discriminant analysis in order to reduce the high-dimensional feature vectors of the signals, and LightGBM is applied to build a classifier for communication emitter identification. The experimental results show that the method performs better than the state-of-the-art individual communication emitter identification technology for the steady signal data set of radio stations with the same plant, batch and model.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies