Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "diagnostyka sieci" wg kryterium: Temat


Tytuł:
Convolutional neural networks for early computer diagnosis of child dysplasia
Konwolucyjne sieci neuronowe do wczesnej diagnostyki komputerowej dysplazji u dzieci
Autorzy:
Bilynsky, Yosyp
Nikolskyy, Aleksandr
Revenok, Viktor
Pogorilyi, Vasyl
Smailova, Saule
Voloshina, Oksana
Kumargazhanova, Saule
Powiązania:
https://bibliotekanauki.pl/articles/27315470.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
convolutional neural networks
computer diagnosis
ultrasound image child dysplasia
konwolucyjne sieci neuronowe
diagnostyka komputerowa
obrazowanie ultrasonograficzne dysplazji dziecięcej
Opis:
The problem in ultrasound diagnostics hip dysplasia is the lack of experience of the doctor in case of incorrect orientation of the hip joint and ultrasound head. The aim of this study was to evaluate the ability of the convolutional neural network (CNN) to classify and recognize ultrasound imaging of the hip joint obtained at the correct and incorrect position of the ultrasound sensor head in the computer diagnosis of pediatric dysplasia. CNN's such as GoogleNet, SqueezeNet, and AlexNet were selected for the study. The most optimal for the task is the use of CNN GoogleNet showed. In this CNN used transfer learning. At the same time, fine-tuning of the network and additional training on the database of 97 standards of ultrasonic images of the hip joint were applied. Image type RGB 32 bit, 210 × 300 pixels are used. Fine-tuning has been performed the lower layers of the structure CNN, in which 5 classes are allocated, respectively 4 classes of hip dysplasia types according to the Graf, and the Type ERROR ultrasound image, where position of the ultrasound sensor head and of the hip joint in ultrasound diagnostics are incorrect orientation. It was found that the authenticity of training and testing is the highest for the GoogleNet network: when classified in the training group accuracy is up to 100%, when classified in the test group accuracy – 84.5%.
Problemem w diagnostyce ultrasonograficznej dysplazji stawu biodrowego jest brak doświadczenia lekarzy w zakresie nieprawidłowej orientacji stawu biodrowego i głowicy ultrasonograficznej. Celem tego badania była ocena zdolności konwolucyjnej sieci neuronowej (CNN) do klasyfikowania i rozpoznawania obrazów ultrasonograficznych stawu biodrowego uzyskanych przy prawidłowym i nieprawidłowym położeniu głowicy ultrasonograficznej we wspomaganej komputerowo diagnostyce dysplazji dziecięcej. Do badania wybrano sieci CNN, takie jak GoogleNet, SqueezeNet i AlexNet. Wykazano, że najbardziej optymalne dla tego zadania jest użycie CNN GoogleNet. Jednocześnie w CNN zastosowano metodologię uczenia transferowego. Zastosowano precyzyjne dostrojenie sieci i dodatkowe szkolenie na podstawie 97 próbek obrazów ultrasonograficznych stawu biodrowego, typ obrazu RGB 32 bity, 210 × 300 pikseli. Przeprowadzono dostrajanie dolnych warstw struktury CNN, w której zidentyfikowano 5 klas, odpowiednio 4 klasy typów dysplazji stawu biodrowego według Grafa oraz obraz ultrasonograficzny typu ERROR, w którym pozycja głowicy ultrasonograficznej i stawu biodrowego w diagnostyce ultrasonograficznej mają nieprawidłową orientację. Stwierdzono, że niezawodność szkolenia i testowania jest najwyższa dla sieci GoogleNet: podczas klasyfikacji w grupie szkoleniowej dokładność wynosi do 100%, podczas klasyfikacji w grupie testowej dokładność wynosi 84,5%.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 2; 56--63
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep neural networks for skin lesions diagnostics
Głębokie sieci neuronowe dla diagnostyki zmian skórnych
Autorzy:
Michalska-Ciekańska, Magdalena
Powiązania:
https://bibliotekanauki.pl/articles/2174701.pdf
Data publikacji:
2022
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
deep neural networks
transfer learning
dermatoscopic images
skin lesions diagnostics
głębokie sieci neuronowe
obraz dermatoskopowy
diagnostyka zmian skórnych
Opis:
Non-invasive diagnosis of skin cancer is extremely necessary. In recent years, deep neural networks and transfer learning have been very popular in the diagnosis of skin diseases. The article contains selected basics of deep neural networks, their interesting applications created in recent years, allowing the classification of skin lesions from available dermatoscopic images.
Nieinwazyjna diagnostyka nowotworów skóry jest niezwykle potrzebna. W ostatnich latach bardzo dużym zainteresowaniem w diagnostyce chorób skóry cieszą się głębokie sieci neuronowe i transfer learning. Artykuł zawiera wybrane podstawy głębokich sieci neuronowych, ich ciekawe zastosowania stworzone w ostatnich latach, pozwalające na klasyfikację zmian skórnych z dostępnych obrazów dermatoskopowych.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2022, 12, 3; 50--53
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnostyka nawierzchni drogowej przy zastosowaniu metod sieci neuronowych – studium przypadku
Road pavement diagnostics using neural network methods – a case study
Autorzy:
Jóźwiak, Zuzanna
Pożarycki, Andrzej
Górnaś, Przemysław
Powiązania:
https://bibliotekanauki.pl/articles/24024764.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej
Tematy:
sieci neuronowe
głębokie uczenie maszynowe
diagnostyka nawierzchni
obrazy cyfrowe
neural networks
deep machine learning
pavement diagnostics
digital images
Opis:
W artykule przedstawiono zastosowanie metody głębokiego uczenia maszynowego, wykorzystanej do jednego z zagadnień diagnostyki nawierzchni drogowej. Opisano techniki głębokiego uczenia maszynowego do rozpoznawania wybranej grupy uszkodzeń nawierzchni zarejestrowanych na obrazach cyfrowych. W ramach eksperymentu numerycznego porównano między sobą dwa modele powszechnie znane jako VGG16 i VGG19. Architektura sieci reprezentowana jest poprzez schemat połączeń charakterystyczny dla konwolucyjnych sieci neuronowych, które z założenia przeznaczone są na potrzeby identyfikacji obiektów na obrazach cyfrowych. Mimo wszystko źródłowa baza danych, znana pod angielską nazwą ImageNet, nie zawiera obrazów cyfrowych nawierzchni jezdni. W celu poszerzenia wiedzy w tym zakresie autorzy utworzyli bazę ortogonalnych obrazów cyfrowych nawierzchni jezdni i opisali jeden z możliwych scenariuszy wykorzystania tych narzędzi do zautomatyzowanej identyfikacji uproszczonej wersji wskaźnika stanu powierzchni.
This paper presents the application of deep machine learning method used for one of the problems of road pavement diagnostics. Deep machine learning techniques for the recognition of a selected group of pavement surface defects observed in digital images are described. In a numerical experiment, two models commonly known as VGG16 and VGG19 were compared to each other. The network architecture is represented by a connection scheme characteristic of convolutional neural networks, which by design are intended for the purpose of identifying objects in digital images. Nevertheless, the source database known as ImageNet does not contain digital images of pavement surfaces. In order to extend the knowledge in this area, the authors created a database of orthogonal digital images of pavement surfaces and described one of the possible scenarios of using these tools for automated identification of a simplified version of the surface condition index.
Źródło:
Drogownictwo; 2022, 2-3; 65--72
0012-6357
Pojawia się w:
Drogownictwo
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Breast cancer diagnosis using wrapper-based feature selection and artificial neural network
Autorzy:
Naveed, Nawazish
Madhloom, Hayan T.
Husain, Mohd Shahid
Powiązania:
https://bibliotekanauki.pl/articles/1956040.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
breast cancer diagnosis
feature selection
neural network
grid search
machine learning
diagnostyka raka piersi
dobór cech
sieć neuronowa
przeszukiwanie sieci
uczenie maszynowe
Opis:
Breast cancer is commonest type of cancers among women. Early diagnosis plays a significant role in reducing the fatality rate. The main objective of this study is to propose an efficient approach to classify breast cancer tumor into either benign or malignant based on digitized image of a fine needle aspirate (FNA) of a breast mass represented by the Wisconsin Breast Cancer Dataset. Two wrapper-based feature selection methods, namely, sequential forward selection(SFS) and sequential backward selection (SBS) are used to identify the most discriminant features which can contribute to improve the classification performance. The feed forward neural network (FFNN) is used as a classification algorithm. The learning algorithm hyper-parameters are optimized using the grid search process. After selecting the optimal classification model, the data is divided into training set and testing set and the performance was evaluated. The feature space is reduced from nine feature to seven and six features using SFS and SBS respectively. The highest classification accuracy recorded was 99.03% with FFNN using the seven SFS selected features. While accuracy recorded with the six SBS selected features was 98.54%. The obtained results indicate that the proposed approach is effective in terms of feature space reduction leading to better accuracy and efficient classification model.
Źródło:
Applied Computer Science; 2021, 17, 3; 19-30
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Worm gear condition monitoring and fault detection from thermal images via deep learning method
Monitorowanie stanu i wykrywanie błędów przekładni ślimakowej na podstawie termogramów z wykorzystaniem metody głębokiego uczenia
Autorzy:
Karabacak, Yunus Emre
Gürsel Özmen, Nurhan
Gümüşel, Levent
Powiązania:
https://bibliotekanauki.pl/articles/1841856.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
fault diagnosis
worm gears
thermal imaging
convolutional neural networks
GoogLeNet
condition monitoring
diagnostyka błędów
przekładnie ślimakowe
termografia
splotowe sieci neuronowe
monitorowanie stanu
Opis:
Worm gearboxes (WG) are often preferred, because of their high torque, quickly reducing speed capacity and good meshing effectiveness, in many industrial applications. However, WGs may face with some serious problems like high temperature at the speed reducer, gear wearing, pitting, scoring, fractures and damages. In order to prevent any damage, loss of time and money, it is an important issue to detect and classify the faults of WGs and develop the maintenance plans accordingly. The present study addresses the application of the deep learning method, convolutional neural network (CNN), in the field of thermal imaging that were gathered from a test rig operating on different loads and speeds. Deep learning approaches, have proven their powerful capability to exploit faulty information from big data and make intelligently diagnostic decisions. Studies concerning the condition monitoring of WGs in the literature are limited. This is the first study on WGs with infrared thermography rather than vibration and sound measurements which have some deficiencies about hardware requirements, restricted measurement abilities and noisy signals. For comparison, CNN was also trained, with vibration and sound data which were collected from the healthy and faulty WGs. The results of fault diagnosis show that thermal image based CNN model on WG has achieved 100% success rate whereas the vibration performance was 83.3 % and sound performance was 81.7%. As a result, thermal image based CNN model showed a better diagnosing performance than the others for WGs. Moreover, condition monitoring of WGs, can be performed correctly with less measurement costs via thermal imaging methods.
W wielu zastosowaniach przemysłowych preferuje się przekładnie ślimakowe, ze względu na ich wysoki moment obrotowy, możliwość szybkiej redukcji prędkości i dobrą sprawność zazębienia. Jednakże przekładnie tego typu narażone są często na poważne problemy, takie jak wysoka temperatura przy reduktorze prędkości czy też zużycie, pitting (wżery), zatarcie, pęknięcie lub uszkodzenie kół zębatych. Zapobiec takim uszkodzeniom, i związanym z nimi stratom finansowym i czasowym, można poprzez wykrywanie i klasyfikowanie błędów przekładni i odpowiednie opracowanie planów konserwacji. Niniejsze badanie dotyczy zastosowania metody głębokiego uczenia oraz splotowych sieci neuronowych (SSN) do monitoringu stanu przekładni na podstawie termogramów zarejestrowanych na stanowisku testowym pracującym przy różnych obciążeniach i prędkościach. Podejścia oparte na uczeniu głębokim umożliwiają efektywne wykorzystanie informacji o błędach pochodzących z dużych zbiorów danych i podejmowanie trafnych decyzji diagnostycznych. Niewiele z dostępnych publikacji poświęconych jest monitorowaniu stanu przekładni ślimakowych. Niniejsza praca jako pierwsza przedstawia badania przekładni ślimakowej z zastosowaniem termografii zamiast zwyczajowo prowadzonych pomiarów drgań i dźwięku, które mają pewne wady dotyczące wymagań sprzętowych, ograniczonych możliwości pomiarowych i głośności sygnałów. SNN opartą na danych termicznych porównano z siecią, którą uczono na zbiorach danych wibracyjnych i akustycznych pochodzących z prawidłowo działających i uszkodzonych przekładni ślimakowych. Wyniki diagnostyki uszkodzeń pokazują, że model SSN przekładni ślimakowej oparty na obrazie termicznym osiągnął stuprocentową (100%) skuteczność, podczas gdy skuteczność modeli opartych na danych wibracyjnych i akustycznych wyniosła, odpowiednio, 83,3% i 81,7%. Tym samym, model SNN oparty na obrazie termicznym pozwalał na trafniejsze diagnozowanie przekładni ślimakowej niż pozostałe modele. Ponadto zastosowanie metod opartych na termografii pozwala na poprawne monitorowanie stanu przy niższych kosztach pomiaru.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 3; 544-556
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault diagnosis of sensors in the control system of a steam turbine
Diagnostyka uszkodzeń torów pomiarowych w układzie sterowania turbiny parowej
Autorzy:
Pawlak, Mariusz
Buchta, Janusz
Oziemski, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/106069.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Technologiczno-Humanistyczny im. Kazimierza Pułaskiego w Radomiu
Tematy:
diagnostic
turbine
control system
neural networks
diagnostyka
turbina
system sterowania
sieci neuronowe
Opis:
A diagnostic and control system for a turbine is presented. The influence of the turbine controller on regulation processes in the power system is described. Measured quantities have been characterized and methods for detecting errors have been determined. The paper presents the application of fuzzy neural networks (fuzzy-NNs) for diagnosing sensor faults in the control systems of a steam turbine. The structure of the fuzzy-NN model and the model’s method of learning, based on measurement data, are presented. Fuzzy-NNs are used to detect faults procedures. The fuzzy-NN models are created and verified.
Przedstawiono system diagnostyki dla układu sterowania turbiny parowej. Opisano procesy regulacji w systemie elektroenergetycznym oraz strukturę układu regulacji turbiny kondensacyjnej w układzie bloku energetycznego. Mierzone wielkości zostały scharakteryzowane wraz z metodami wykrywania uszkodzeń dla poszczególnych wielkości. W pracy przedstawiono zastosowanie rozmytych sieci neuronowych do detekcji uszkodzeń torów pomiarowych Przedstawiono strukturę modelu rozmytego i metodę uczenia modelu na podstawie danych pomiarowych. Zaprezentowano przykład zastosowania modelu FNN i zweryfikowano jego działanie na podstawie rzeczywistych danych pomiarowych.
Źródło:
Journal of Automation, Electronics and Electrical Engineering; 2019, 1, 1; 29-36
2658-2058
2719-2954
Pojawia się w:
Journal of Automation, Electronics and Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning versus classical neural approach to mammogram recognition
Autorzy:
Kurek, J.
Świderski, B.
Osowski, S.
Kruk, M.
Barhoumi, W.
Powiązania:
https://bibliotekanauki.pl/articles/200919.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
convolutional neural networks
breast cancer diagnosis
mammogram recognition
diagnostic features
splotowe sieci neuronowe
diagnostyka raka piersi
rozpoznawanie
mammografia
cechy diagnostyczne
Opis:
Automatic recognition of mammographic images in breast cancer is a complex issue due to the confusing appearance of some perfectly normal tissues which look like masses. The existing computer-aided systems suffer from non-satisfactory accuracy of cancer detection. This paper addresses this problem and proposes two alternative techniques of mammogram recognition: the application of a variety of methods for definition of numerical image descriptors in combination with an efficient SVM classifier (so-called classical approach) and application of deep learning in the form of convolutional neural networks, enhanced with additional transformations of input mammographic images. The key point of the first approach is defining the proper numerical image descriptors and selecting the set which is the most class discriminative. To achieve better performance of the classifier, many image descriptors were defined by means of applying different characterization of the images: Hilbert curve representation, Kolmogorov-Smirnov statistics, the maximum subregion principle, percolation theory, fractal texture descriptors as well as application of wavelet and wavelet packets. Thanks to them, better description of the basic image properties has been obtained. In the case of deep learning, the features are automatically extracted as part of convolutional neural network learning. To get better quality of results, additional representations of mammograms, in the form of nonnegative matrix factorization and the self-similarity principle, have been proposed. The methods applied were evaluated based on a large database composed of 10,168 regions of interest in mammographic images taken from the DDSM database. Experimental results prove the advantage of deep learning over traditional approach to image recognition. Our best average accuracy in recognizing abnormal cases (malignant plus benign versus healthy) was 85.83%, with sensitivity of 82.82%, specificity of 86.59% and AUC = 0.919. These results are among the best for this massive database.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 831-840
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On-the-fly diagnosability analysis of bounded and unbounded labeled Petri nets using verifier nets
Autorzy:
Li, B.
Khlif-Bouassida, M.
Toguéyni, A.
Powiązania:
https://bibliotekanauki.pl/articles/330272.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fault diagnosis
discrete event system
labeled Petri nets
on-the-fly diagnosability analysis
verifier nets
diagnostyka błędu
układ zdarzeń dyskretnych
sieci Petriego
Opis:
This paper considers the problem of diagnosability analysis of discrete event systems modeled by labeled Petri nets (LPNs). We assume that the LPN can be bounded or unbounded with no deadlock after firing any fault transition. Our approach is novel and presents the on-the-fly diagnosability analysis using verifier nets. For a given LPN model, the verifier net and its reachability graph (for a bounded LPN) or coverability graph (for an unbounded LPN) are built on-the-fly and in parallel for diagnosability analysis. As soon as a diagnosability decision is established, the construction is stopped. This approach achieves a compromise between computation limitations due to efficiency and combinatorial explosion and it is useful to implement an engineering approach to the diagnosability analysis of complex systems.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 2; 269-281
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przetwarzanie danych w Centrum Diagnostyki PKP Polskie Linie Kolejowe S.A. – nowe inicjatywy
New trands in data processing explored at the centre for railway diagnostics, PKP Polskie Linie Kolejowe S.A.
Autorzy:
Madej, L.
Gołąbek, P.
Powiązania:
https://bibliotekanauki.pl/articles/249575.pdf
Data publikacji:
2018
Wydawca:
Stowarzyszenie Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej
Tematy:
utrzymanie predykcyjne
big data
sieci sensorowe
WSN
diagnostyka kolejowa
predictive maintenance
Big Data
wireless sensor networks
railway diagnostics
Opis:
Burzliwy rozwój technologii informatycznych pozwala na pozyskiwanie, przetwarzanie i automatyczną analizę wielkich ilości danych diagnostycznych. Umożliwia to realizację optymalnych pod względem efektywności i kosztu strategii utrzymania infrastruktury kolejowej. Centrum Diagnostyki PKP Polskie Linie Kolejowe S.A. utrzymuje obszerny zbiór danych diagnostycznych i podejmuje działania ku przekształceniu go w wydajną bazę do działań analitycznych, zgodnie ze współczesnymi trendami, znanymi pod hasłem Big Data Analytics. Częścią aktywności w tym zakresie jest pozyskiwanie nowych źródeł danych diagnostycznych. Przykładem jest projekt pilotażowy wdrożenia sieci autonomicznych sensorów bezprzewodowych do monitorowania temperatury szyn. Artykuł opisuje podjęte i planowane działanie wraz z koniecznym kontekstem technologicznym.
Fierce development of IT sector allows for an effective acquisition, processing and automatic analysis of large volumes of diagnostic data. This in turn brings in the possibility of implementing an optimal strategy for railway infrastructure maintenance in terms of both effectiveness and operational costs. The Center for Diagnostics, PKP Polskie Linie Kolejowe S.A. maintains a large database of diagnostic data and puts an effort toward transforming this data set into effective and consistent platform of data analysis according to current trend called Big Data Analytics. A part of an effort in this field is extending the database with new diagnostic data sets. The recent example of such activity is a drive test project of implementing a wireless sensor network for rail temperature monitoring. The undertaken and planned initiatives along with necessary technological context have been described in the paper.
Źródło:
Zeszyty Naukowo-Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji w Krakowie. Seria: Materiały Konferencyjne; 2018, 1(115); 59-73
1231-9171
Pojawia się w:
Zeszyty Naukowo-Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji w Krakowie. Seria: Materiały Konferencyjne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnostics of analog systems using Artificial Neural Networks
Diagnostyka systemów analogowych z wykorzystaniem sztucznych sieci neuronowych
Autorzy:
Bilski, P.
Powiązania:
https://bibliotekanauki.pl/articles/277729.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
artificial intelligence
artificial neural networks
fault detection
analog systems diagnostics
sztuczna inteligencja
sztuczne sieci neuronowe
wykrywanie uszkodzeń
diagnostyka systemów analogowych
Opis:
The paper presents the diagnostic applications of artificial neural networks (ANN). Aims and problems present in the contemporary diagnostics are introduced. The structure of the artificial intelligence-based system is presented and discussed in detail. Various approaches to design the on-line fault detection and location system using artificial intelligence approaches are introduced. The generic architecture of the ANN and its variations are presented. Next, their diagnostic applications, advantages and drawbacks are discussed. Application of RBF ANN-based diagnostic module to detect and identify faults of the 5th order lowpass filter is presented. Finally, usability and limitations of the ANN-based diagnostic system are provided.
W artykule przedstawiono zastosowania sztucznych sieci neuronowych w diagnostyce systemów analogowych. Opisano główne cele diagnostyki oraz problemy spotykane obecnie podczas detekcji i lokalizacji uszkodzeń. Wprowadzono ogólną strukturę systemu diagnostycznego opartego na metodach sztucznej inteligencji. Przedstawiono różne metody inteligentne, które mogą zostać zastosowane w systemie działającym w trybie on-line. Następnie omówiono ogólną architekturę sztucznej sieci neuronowej oraz jej cechy szczególnie istotne z punktu widzenia detekcji i lokalizacji uszkodzeń. Specyficzne architektury sieci wraz z ich zastosowaniami diagnostycznymi przedstawiono w szczegółach. Na przykładzie filtru dolnoprzepustowego 5. rzędu przedstawiono działanie metody diagnostycznej wykorzystującej sieć neuronową typu RBF. Omówiono możliwości i ograniczenia stosowalności sztucznych sieci neuronowych jako narzędzia diagnostycznego.
Źródło:
Pomiary Automatyka Robotyka; 2017, 21, 4; 23-32
1427-9126
Pojawia się w:
Pomiary Automatyka Robotyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozwój monitoringu sieci wodociągowej – działania w zakresie optymalizacji pracy układu dystrybucji wody na przykładzie PWiK Okręgu Częstochowskiego SA w Częstochowie
Autorzy:
Herczyk, T.
Kuliński, E.
Powiązania:
https://bibliotekanauki.pl/articles/303789.pdf
Data publikacji:
2017
Wydawca:
Wydawnictwo Druk-Art
Tematy:
sieć wodociągowa
monitoring sieci wodociągowej
diagnostyka sieci wodociągowej
water supply network
monitoring of the water supply network
diagnosis of the water supply network
Opis:
Współczesne zasady szeroko pojętego świadczenia usług, z uwagi na postęp technologiczny oraz wyznaczniki prośrodowiskowe, wymuszają na dostawcach ciągłe starania zmierzające do poprawy procesu produkcji i tym samym jakości produktu końcowego, tak aby spełniał on wymagania odbiorcy. Tylko wówczas dostawca staje się konkurencyjny na rynku, a kupujący zadowolony z zakupu. W branży, w której towarem tym jest woda pitna, sytuacja wygląda bardzo podobnie. Z jednej strony mamy przedsiębiorstwa wodociągowe, które nieustannie dążą do doskonalenia procesu dystrybucji wody, z drugiej zaś klienta, który bacznie przygląda się tym poczynaniom i wystawia ocenę końcową, płacąc za ten cenny towar.
Źródło:
Napędy i Sterowanie; 2017, 19, 1; 66-71
1507-7764
Pojawia się w:
Napędy i Sterowanie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie SSN do predykcji zużycia węglowych nakładek odbieraka prądu
Application of artificial neural networks for prediction of pantograph carbon strips wear
Autorzy:
Kuźnar, M.
Powiązania:
https://bibliotekanauki.pl/articles/404331.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Symulacji Komputerowej
Tematy:
odbierak prądu
pantograf
węglowa nakładka ślizgowa
diagnostyka
prognoza zużycia
sztuczne sieci neuronowe
SSN
current collector
pantograph
carbon sliding strip
diagnostics
wear prediction
artificial neural networks
ANN
Opis:
Odbieraki prądu w pojeździe trakcyjnym służą do poboru prądu z sieci trakcyjnej. Elementem mającym bezpośredni kontakt z przewodem jezdnym jest ślizgacz, a dokładniej węglowa nakładka stykowa, narażona zarówno na zużycie eksploatacyjne, jak i różnego rodzaju uszkodzenia związane z użytkowaniem. Jest elementem odbieraka najczęściej wymienianym. W celu ustalenia przyczyny uszkodzenia nakładki konieczna jest znajomość typu uszkodzenia. Przyczyna wymiany nakładki wnioskowana może być na podstawie charakterystyki zużycia węglowych nakładek stykowych. W celu predykcji zużycia węglowych nakładek stykowych zastosowano Sztuczną Sieć Neuronową typu Feed-Forward z propagacją wsteczną o 6 warstwach ukrytych po 10 neuronów w każdej warstwie. Błąd średniokwadratowy dla procesu uczenia sieci wyniósł 0,578, a wyniki dotyczące predykcji zużycia nakładki przedstawiono w artykule.
In the traction vehicles, current consumption from the overhead contact line is possible thanks to the current collectors (pantographs). An element that has a direct contact with the contact wire is a slide plate, and more specifically, a carbon contact strips. Affected by both operational wear and various types of damage related to operational maintenance, carbon strip is the element which most commonly need to be exchanged. To determine the cause of damage to the contact strip, it is necessary to know the type of damage. The reason for replacing the carbon contact strip may be claimed on the basis of the wear characteristics. In order to predict the wear of carbon strip, a Feed-Forward Artificial Neural Network with backward propagation of 6 hidden layers and 10 neurons in each layer was applied. The mean square error for the network learning process was 0.578, and the results for the pantograph contact strip wear were presented in the article.
Źródło:
Symulacja w Badaniach i Rozwoju; 2017, 8, 3-4; 97-103
2081-6154
Pojawia się w:
Symulacja w Badaniach i Rozwoju
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System wspomagający diagnostykę czerniaka złośliwego przy pomocy metod przetwarzania obrazu i algorytmów inteligencji obliczeniowej
Decision system supporting melanomena detection with the usage of image processing and computational intelligence methods
Autorzy:
Mikołajczyk, A.
Kwasigroch, A.
Grochowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/269110.pdf
Data publikacji:
2016
Wydawca:
Politechnika Gdańska. Wydział Elektrotechniki i Automatyki
Tematy:
diagnostyka
wspomaganie decyzji
przetwarzanie obrazu
sztuczne sieci neuronowe
czerniak złośliwy
diagnostics
decision support
image processing
artificial neural networks
melanoma malignant
Opis:
Nowotwory skóry są najczęściej spotykanymi nowotworami na świecie. Czerniaki złośliwe stanowią od około 5 do 7% wszystkich nowotworów złośliwych skóry u człowieka. Ich wczesne zdiagnozowanie jest kluczowym czynnikiem w późniejszej pomyślnej terapii. Niniejsza praca zawiera propozycję rozwinięcia i zautomatyzowania najważniejszej metody diagnozowania czerniaków, metody ABCD Stoltza. W artykule przedstawiono koncepcję i implementację zautomatyzowanego systemu do diagnostyki znamion skórnych pod kątem wykrycia czerniaka zł ościowego. Zaproponowano nową, rozszerzoną wersję metody dermatoskopowej ABCD i zaimplementowano niezbędne algorytmy w środowisku Matlab. Główne cechy znamion skórnych o charakterze nowotworowym są wyszukiwane automatycznie przy pomocy metod przetwarzania obrazu oraz opracowanych algorytmów. Decyzja na temat rozpoznania lub nie czerniaka złośliwego podejmowana jest przez sztuczną sieć neuronową, wnioskującą na podstawie wskaźników wyznaczonych na etapie przetwarzania obrazów. Omawiany system wspomagania decyzji może służyć jako narzędzie usprawniające pracę lekarzy pierwszego kontaktu lub jako system umożliwiający szybkie samobadanie skóry przez pacjentów. Aplikację przetestowano na 126 znamionach skórnych. Uzyskano czułość równą 98% oraz swoistość równą 73%, co jest bardzo dobrym osiągnięciem.
Skin cancer is the most common cancer in the world. Malignant melanomas make up about 5-7% of all types of human skin cancer. The work describes the development process of an automated system purposed for the diagnosis of skin lesions in order to detect a malignant melanoma. The application should be used as a decision support system for primary care physicians or as a system capable of self-examination of the skin. When designing an application author developed and proposed a new, enhanced version of the ABCD dermatoscopic method of Stoltz. To describe main features of skin lesions for malignancy, image processing methods were used. In addition, application was trained by artificial neural network, which acts as a specialist doctor, who is responsible of making a diagnosis based on these features. The application has been tested on 126 the skin moles. It gets high final score with a sensitivity of 98% and specificity equal to 73.08%.
Źródło:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej; 2016, 51; 119-122
1425-5766
2353-1290
Pojawia się w:
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Uczenie głębokie w diagnostyce medycznej
Deep Learning in Medical Diagnosis
Autorzy:
Antczak, K.
Powiązania:
https://bibliotekanauki.pl/articles/404011.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Symulacji Komputerowej
Tematy:
sieci neuronowe
diagnostyka medyczna
uczenie głębokie
neural networks
medical diagnosis
deep learning
Opis:
W pracy przeanalizowano perspektywy zastosowania metod uczenia głębokiego w diagnostyce medycznej. Jedną z kluczowych cech uczenia głębokiego jest zdolność do wyodrębniania złożonych wzorców o strukturze hierarchicznej. Wzorce takie występują również w diagnostyce, jako tak zwane diamenty diagnostyczne. Zastosowanie głębokich sieci neuronowych mogłoby poprawić jakość klasyfikatorów wykrywających choroby na podstawie objawów. Dodatkowo umożliwiłoby to sterowanie czułoscią i swoistością klasyfikatorów.
In this paper we analyze perspectives of applying deep learning methods in a field of medical diagnosis. One of key features of deep learning is ability to extract complex, hierarchical patterns. Such patterns are present also in a medical diagnosis, where they are known as diagnostic diamonds. Applying deep neural networks could increase performance of medical classifiers. Moreover, it would allow to adjust sensitivity and specificity of classifiers.
Źródło:
Symulacja w Badaniach i Rozwoju; 2016, 7, 3-4; 83-88
2081-6154
Pojawia się w:
Symulacja w Badaniach i Rozwoju
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of genetic algorithms in the task of choosing inputs for probabilistic neural network classifier of faults of gear-tooth
Autorzy:
Czech, P.
Mikulski, J.
Powiązania:
https://bibliotekanauki.pl/articles/393327.pdf
Data publikacji:
2015
Wydawca:
Polskie Stowarzyszenie Telematyki Transportu
Tematy:
gearbox
diagnostics
neural networks
Wigner-Ville transform
genetic algorithm
skrzynia biegów
diagnostyka
sieci neuronowe
transformata Wignera-Ville'a
algorytm genetyczny
Opis:
In this article are presented results of trials of building an application based on probabilistic neural network, used to diagnose damages to the gear wheel teeth in the form of cracks at the base of the tooth. To determine the proper network learning process is necessary to get from the tested object numerous set of input data. Conducted researches are based on data obtained from the identified model of gear working in the drive system, which made it possible to acquire the necessary amount of data. In experiments was tested the usefulness of different sets of descriptors of teeth damages, constructed on the basis of vibratory signals, processed using the Wigner-Ville transform. Often the problem, which makes the proper learning of the neural classifiers impossible is the size of the network structure. Therefore, in further studies was examined the usefulness of genetic algorithms which task is selecting an input data for the artificial neural networks of PNN type.
Źródło:
Archives of Transport System Telematics; 2015, 8, 3; 15-19
1899-8208
Pojawia się w:
Archives of Transport System Telematics
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies