Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "deep mining" wg kryterium: Temat


Tytuł:
Environment protection policy and monitoring systems for polymetallic nodules exploitation
Autorzy:
Abramowski, T.
Powiązania:
https://bibliotekanauki.pl/articles/27315953.pdf
Data publikacji:
2018
Wydawca:
STE GROUP
Tematy:
górnictwo głębinowe
ochrona środowiska i monitoring
konkrecje polimetaliczne
deep sea mining
protection of environment and monitoring
polymetallic nodules
Opis:
The paper presents the analysis of ongoing implementation of environmental protection policies into deep seabed mining projects of Clarion-Clipperton Fracture Zone, (CCZ). Short introduction to the current environmental regime in the Area under UNCLOS jurisdiction is presented and potential impact of deep seabed mining is discussed. Selected results of efforts to minimize the impact on the marine environment and environmental baseline studies are described.
Źródło:
New Trends in Production Engineering; 2018, 1, 1; 523-529
2545-2843
Pojawia się w:
New Trends in Production Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A survey of big data classification strategies
Autorzy:
Banchhor, Chitrakant
Srinivasu, N.
Powiązania:
https://bibliotekanauki.pl/articles/2050171.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
big data
data mining
MapReduce
classification
machine learning
evolutionary intelligence
deep learning
Opis:
Big data plays nowadays a major role in finance, industry, medicine, and various other fields. In this survey, 50 research papers are reviewed regarding different big data classification techniques presented and/or used in the respective studies. The classification techniques are categorized into machine learning, evolutionary intelligence, fuzzy-based approaches, deep learning and so on. The research gaps and the challenges of the big data classification, faced by the existing techniques are also listed and described, which should help the researchers in enhancing the effectiveness of their future works. The research papers are analyzed for different techniques with respect to software tools, datasets used, publication year, classification techniques, and the performance metrics. It can be concluded from the here presented survey that the most frequently used big data classification methods are based on the machine learning techniques and the apparently most commonly used dataset for big data classification is the UCI repository dataset. The most frequently used performance metrics are accuracy and execution time.
Źródło:
Control and Cybernetics; 2020, 49, 4; 447-469
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Deep-Learning-Based Bug Priority Prediction Using RNN-LSTM Neural Networks
Autorzy:
Bani-Salameh, Hani
Sallam, Mohammed
Al shboul, Bashar
Powiązania:
https://bibliotekanauki.pl/articles/1818480.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
assigning
priority
bug tracking systems
bug priority
bug severity
closed-source
data mining
machine learning
ML
deep learning
RNN-LSTM
SVM
KNN
Opis:
Context: Predicting the priority of bug reports is an important activity in software maintenance. Bug priority refers to the order in which a bug or defect should be resolved. A huge number of bug reports are submitted every day. Manual filtering of bug reports and assigning priority to each report is a heavy process, which requires time, resources, and expertise. In many cases mistakes happen when priority is assigned manually, which prevents the developers from finishing their tasks, fixing bugs, and improve the quality. Objective: Bugs are widespread and there is a noticeable increase in the number of bug reports that are submitted by the users and teams’ members with the presence of limited resources, which raises the fact that there is a need for a model that focuses on detecting the priority of bug reports, and allows developers to find the highest priority bug reports. This paper presents a model that focuses on predicting and assigning a priority level (high or low) for each bug report. Method: This model considers a set of factors (indicators) such as component name, summary, assignee, and reporter that possibly affect the priority level of a bug report. The factors are extracted as features from a dataset built using bug reports that are taken from closed-source projects stored in the JIRA bug tracking system, which are used then to train and test the framework. Also, this work presents a tool that helps developers to assign a priority level for the bug report automatically and based on the LSTM’s model prediction. Results: Our experiments consisted of applying a 5-layer deep learning RNN-LSTM neural network and comparing the results with Support Vector Machine (SVM) and K-nearest neighbors (KNN) to predict the priority of bug reports. The performance of the proposed RNN-LSTM model has been analyzed over the JIRA dataset with more than 2000 bug reports. The proposed model has been found 90% accurate in comparison with KNN (74%) and SVM (87%). On average, RNN-LSTM improves the F-measure by 3% compared to SVM and 15.2% compared to KNN. Conclusion: It concluded that LSTM predicts and assigns the priority of the bug more accurately and effectively than the other ML algorithms (KNN and SVM). LSTM significantly improves the average F-measure in comparison to the other classifiers. The study showed that LSTM reported the best performance results based on all performance measures (Accuracy = 0.908, AUC = 0.95, F-measure = 0.892).
Źródło:
e-Informatica Software Engineering Journal; 2021, 15, 1; 29--45
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stress Distribution Around Mechanized Longwall Face at Deep Mining in Quang Ninh Underground Coal Mine
Autorzy:
Bui, Manh Tung
Le, Tien Dung
Vo, Trong Hung
Powiązania:
https://bibliotekanauki.pl/articles/2019334.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
stress distribution
longwall face
deep mining
underground coal mine
Quang Ninh
naprężenie
dystrybucja
przodek ścianowy
górnictwo
Opis:
Quang Ninh underground coal mines are currently in the phase of finishing up the mineral reserves located near the surface. Also, in this phase, a number of coal mines have opened and prepared new mine sites for the extraction of the reserves at greater depth. Several mines have mined at -350 m depth and are driving opening excavations at -500 m depth below sea level. The mining at greater depth faces many difficulties, such as a significant increase in support and excavation pressures. The longwall face pressure is mostly manifested in great magnitude that causes support overloaded and jumped and face spall/roof fall. This paper, based on the geological condition of the Seam 11 Ha Lam coal mine, uses the numerical program UDEC for studying the impact of mining depth on stress distribution around the longwall face. The results show that the deeper the mining is, the greater the plastic deformation zone is. The peak front abutment stress moves closer to the coal wall, mainly concentrating on the immediate roof and top coal. The top coal is greatly broken, and its bearing capacity is decreased. Some solutions to the stability of roof strata are proposed, and a proper working resistance of support is determined. Additionally, the paper suggests that the starting depth for deep mining in Quang Ninh underground coal mines should be -350 m below sea level.
Źródło:
Inżynieria Mineralna; 2021, 2; 167--176
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Laboratory test rig for examining aggregate mining from seabed using the Airlift method
Autorzy:
Dymarski, C.
Pająk, T.
Powiązania:
https://bibliotekanauki.pl/articles/259587.pdf
Data publikacji:
2018
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
Airlift method
Airlift test rig
deep-level mining
Opis:
The use of the Airlift method for transporting the mined aggregate from the seabed to the deck of the mining ship is an alternative for presently used solutions, such as suction pumps or scoop transport for instance. Building the laboratory test rig was preceded by tests in natural conditions. The rig was designed in such a way as to model these conditions as close as possible, and to have potential for further development.
Źródło:
Polish Maritime Research; 2018, S 1; 145-150
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Unsupervised dynamic topic model for extracting adverse drug reaction from health forums
Autorzy:
Eslami, Behnaz
Motlagh, Mehdi Habibzadeh
Rezaei, Zahra
Eslami, Mohammad
Amini, Mohammad Amin
Powiązania:
https://bibliotekanauki.pl/articles/117691.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
Deep Learning
topic modeling
Text Mining
ADR
NMF
analiza tekstu
uczenie maszynowe
modelowanie tematyczne
Opis:
The relationship between drug and its side effects has been outlined in two websites: Sider and WebMD. The aim of this study was to find the association between drug and its side effects. We compared the reports of typical users of a web site called: “Ask a patient” website with reported drug side effects in reference sites such as Sider and WebMD. In addition, the typical users’ comments on highly-commented drugs (Neurotic drugs, Anti-Pregnancy drugs and Gastrointestinal drugs) were analyzed, using deep learning method. To this end, typical users’ comments on drugs' side effects, during last decades, were collected from the website “Ask a patient”. Then, the data on drugs were classified based on deep learning model (HAN) and the drugs’ side effect. And the main topics of side effects for each group of drugs were identified and reported, through Sider and WebMD websites. Our model demonstrates its ability to accurately describe and label side effects in a temporal text corpus by a deep learning classifier which is shown to be an effective method to precisely discover the association between drugs and their side effects. Moreover, this model has the capability to immediately locate information in reference sites to recognize the side effect of new drugs, applicable for drug companies. This study suggests that the sensitivity of internet users and the diverse scientific findings are for the benefit of distinct detection of adverse effects of drugs, and deep learning would facilitate it.
Źródło:
Applied Computer Science; 2020, 16, 1; 41-59
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experimental verification of the concept of the use of controlled pyrotechnic reaction as a source of energy as a part of the transport system from the seabed
Autorzy:
Filipek, W.
Broda, K.
Powiązania:
https://bibliotekanauki.pl/articles/135689.pdf
Data publikacji:
2017
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
deep sea mining
transport from the sea floor
blasting materials
pyrotechnics
experimental verification
source of Energy
Opis:
In this article the authors discuss the concept of using pyrotechnical materials for transportation in deep sea environment. The use of pyrotechnical materials in underwater transportation involves their use as a source of energy (needed, for instance, in emptying the ballast tank). The authors presented the experimental verification of the usefulness of pyrotechnical materials in transporting from great depth. In the experiments, a modified composition black powder was used as source of energy. In the research the authors focused on two methods of controlling the pyrotechnical reaction effects, i.e., mechanical suppression of the blast, so as to reduce its negative effect on the housing of the transporter, and control of the pyrotechnical reaction itself. The obtained results confirm the possibility of using pyrotechnical materials in transportation of deposits from considerable depth.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2017, 49 (121); 77-83
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Theoretical foundations of the implementation of controlled pyrotechnical reactions as an energy source for transportation from the sea bed
Autorzy:
Filipek, W.
Broda, K.
Powiązania:
https://bibliotekanauki.pl/articles/134942.pdf
Data publikacji:
2016
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
deep sea mining
transport from the sea floor
blasting materials
pyrotechnics
implementation
exploitation
Opis:
The depletion of inland deposits of natural resources and the increasing demand for some raw materials have resulted in the growing interest in deep sea exploitation of natural deposits. This gives an impulse to the mounting research and development of methods of exploitation of natural deposits from the sea and ocean floors, which are not limited to petrol and gas. The main area of difficulty in opencast mining methods conducted at considerable depths is the transportation process from the sea floor to the surface. The methods employed so far, such as continuous line bucket (CLB), hydraulic pumping (HP) and air-lift pumping (ALP), have both advantages and disadvantages. The most salient problem is their considerable energy consumption resulting in great costs, hence the need for the development of less expensive methods. The authors have suggested a new method, involving the use of pyrotechnical materials as a source of energy in the transportation from the sea floor and have presented its theoretical grounding. Special emphasis has been placed on determining the depth to which the method can be applied and the energy needed in transportation in relation to the density of the transported substance (output).
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2016, 48 (120); 117-124
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Property Issues Relating to Deep-Seabed Mining in the Light of the United Convention on the Sea of 1982
Autorzy:
Hennicke, Larisa
Powiązania:
https://bibliotekanauki.pl/articles/684924.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Tematy:
right to property
deep-seabed mining
United Convention on the Sea of 1982
Opis:
The study aims at the evaluation of the right to property in the context of the deep-seabed mining. The author present deep-seabed mining in the light of the United Convention on the Sea of 1982 focusing on the lack of knowledge about the oceans and the lack of regulations regarding the protection and enhancement of the oceans.
Źródło:
Adam Mickiewicz University Law Review; 2014, 4; 207-212
2450-0976
Pojawia się w:
Adam Mickiewicz University Law Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On graph mining with deep learning: introducing model r for link weight prediction
Autorzy:
Hou, Yuchen
Holder, Lawrence B.
Powiązania:
https://bibliotekanauki.pl/articles/91884.pdf
Data publikacji:
2019
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
deep learning
neural networks
machine learning
graph mining
link weight prediction
predictive models
node embeddings
Opis:
Deep learning has been successful in various domains including image recognition, speech recognition and natural language processing. However, the research on its application in graph mining is still in an early stage. Here we present Model R, a neural network model created to provide a deep learning approach to the link weight prediction problem. This model uses a node embedding technique that extracts node embeddings (knowledge of nodes) from the known links’ weights (relations between nodes) and uses this knowledge to predict the unknown links’ weights. We demonstrate the power of Model R through experiments and compare it with the stochastic block model and its derivatives. Model R shows that deep learning can be successfully applied to link weight prediction and it outperforms stochastic block model and its derivatives by up to 73% in terms of prediction accuracy. We analyze the node embeddings to confirm that closeness in embedding space correlates with stronger relationships as measured by the link weight. We anticipate this new approach will provide effective solutions to more graph mining tasks
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 1; 21-40
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Chemical and morphological characterization of polymetallic (Mn-Fe) nodules from the Clarion-Clipperton Zone in the Pacific Ocean
Autorzy:
Kozłowska-Roman, Agata
Mikulski, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/2058694.pdf
Data publikacji:
2021
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
polymetallic nodules
critical elements
rare earth elements
deep-sea mining
Clarion-Clipperton Fracture Zone
Pacific
Opis:
Geochemical studies (WD-XRF, ICP-MS, and GF-AAS) have shown that polymetallic nodules from the eastern Clarion-Clipperton Zone (CCZ) in the Pacific Ocean are enriched in several metals such as Cu (mean 1.16%), Ni (1.15%), Co (0.15%), and Zn (0.14%), as well as remarkable contents of Mo (0.059%), V (0.04%), Ce (0.019%), Nd (0.011%), Li (0.015), and Pt (43 ppb). The average content of REE, together with Y and Sc, is 620 ppm. In nodules from the CCZ metal concentrations are often much higher than those reported in nodules from other ocean basins in the world. The bulk-nodule mean value of the Mn/Fe ratio is 5.3, which is characteristic for a mixed (hydrogenetic and diagenetic) origin of the nodules. Microprobe investigation revealed two different chemical compositions of the layers, and ascertained their general metal content. The nodules analyzed are composed mainly of concentric-collomorphic laminae of Mn and Fe (oxy)hydroxides which crystallized around mineral nuclei (e.g., quartz, clay minerals), bioclasts or rock fragments. They are from 3.3 to 7.6 cm in diameter. The chemical and physical properties of the laminae allowed distinction of two genetic types: hydrogenetic and diagenetic. Those formed as a result of hydrogenesis had increased values of Co, Si, Cl and S, while formed diagenetically showed increased levels of Cu, Ni, Mg, Zn and K. These lamina types are characterized by different growth structures, reflectivity, density and Mn/Fe ratios. The ratio of the diagenetic layers to hydrogenetic layers (192/53) in representative polymetallic nodules shows that the nodules of this study are of mixed hydrogenetic-diagenetic type. A mixed genesis was also shown by discriminant diagrams, with these CCZ samples being located at the transition between typical hydrogenetic and diagenetic fields.
Źródło:
Geological Quarterly; 2021, 65, 4; 177--194
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Gotowi na nowe wyzwania - PeBeKa S.A.
Ready for new challenges - PeBeKa S.A.
Autorzy:
Leszczuk, Dominik
Powiązania:
https://bibliotekanauki.pl/articles/2106553.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
górnictwo podziemne
roboty górnicze
roboty budowlane
wiercenia powierzchniowe
underground mining
mining works
construction works
deep drilling
Opis:
Artykuł prezentuje rys historyczny i zakres działalności Przedsiębiorstwa Budowy Kopalń PeBeKa S.A., które w 2020 roku obchodziło 60. jubileusz funkcjonowania. Zakres działalności i umiejętności, które towarzyszą funkcjonowaniu PeBeKa S.A., pozwoliło na określane firmy mianem „budowniczych KGHM”
This article presents the history and activities of Przedsiębiorstwo Budowy Kopalń PeBeKa S.A., which celebrated its 60th anniversary in 2020. The range of activities and skills that accompany the functioning of PeBeKa S.A. allowed them to be referred to as the “KGHM Builders”
Źródło:
Mining – Informatics, Automation and Electrical Engineering; 2020, 58, 1; 59-64
2450-7326
2449-6421
Pojawia się w:
Mining – Informatics, Automation and Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ready for new challenges - PeBeKa S.A.
Autorzy:
Leszczuk, Dominik
Powiązania:
https://bibliotekanauki.pl/articles/29520585.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
underground mining
mining works
construction works
deep drilling
górnictwo podziemne
roboty górnicze
roboty budowlane
wiercenia
powierzchniowe
Opis:
This article presents the history and activities of Przedsiębiorstwo Budowy Kopalń PeBeKa S.A., which celebrated its 60th anniversary in 2020. The range of activities and skills that accompany the functioning of PeBeKa S.A. allowed them to be referred to as the “KGHM Builders”.
Artykuł prezentuje rys historyczny i zakres działalności Przedsiębiorstwa Budowy Kopalń PeBeKa S.A., które w 2020 roku obchodziło 60. jubileusz funkcjonowania. Zakres działalności i umiejętności, które towarzyszą funkcjonowaniu PeBeKa S.A., pozwoliło na określane firmy mianem „budowniczych KGHM”.
Źródło:
Mining – Informatics, Automation and Electrical Engineering; 2020, 58, 1; 53-58
2450-7326
2449-6421
Pojawia się w:
Mining – Informatics, Automation and Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The present situation, problems and countermeasures to deep mining in Huainan and Huaibei coal mining areas
Sytuacja obecna, problemy i środki zaradcze w kopalniach podziemnych Zagłębi Węglowych Huainan i Huaibei
Autorzy:
Li, D. Z.
Powiązania:
https://bibliotekanauki.pl/articles/348567.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
wydobycie węgla kamiennego
górnictwo głębinowe
metody stosowane w górnictwie
coal mining
deep mining
mining methods
Opis:
The Huainan Coalfield and Huaibeicoalfield (known as the Huainan and Huaibei Mining Areas) are located in China's southeast Anhui Province, where coal-bearing strata belong to the North China Carboniferous and Permian series. The estimated reserves account for about 60 billion tons of all kinds of coals. In recent years, the output of raw coal has been maintained at about 100 million tons. Coal mines are being transformed into deep mining. In the process of deep mining, the following problems can occur: thick alluvial layer, high gas, high pressure and high geothermal temperature, (so called as "one thick and three high problems"). The problems make mine construction, coal mining and roadway support difficult. After years of research and production practice, the freezing method of the construction shafts in thick alluvium, the technology of integrated coal exploitation and gas extraction, various ways of roadway support, enhanced ventilation, local cooling and personal protective measures were gradually worked out to solve "one thick and three high problems", which provides a guarantee for the safe and efficient production in the Huainan and Huaibei Mining Areas. In the Huainan and Huaibei Mining Areas, raw coal output in 2011 reached 130 million tons, mortality per 100 tons was below 0.3. These values are almost impossible to achieve.
Kopalnie Huainan i Huaibei (znane jako Zagłębie Węglowe Huainan i Huaibei) leżą w południowo-wschodniej chińskiej prowincji Anhui, gdzie występują złoża węgla kamiennego z północnochińskiego okresu karbonu i permu. Szacowane zasoby wynoszą ok. 60 miliardów ton wszystkich rodzajów węgla. W ostatnich latach wydobycie surowca utrzymuje się na poziomie ok. 100 milionów ton. Zauważalną tendencją jest coraz większa głębokość eksploatacji. Generuje to problemy w procesie eksploatacji tj. gruba warstwa aluwialna, duże stężenie gazu, wysokie ciśnienie i wysoka temperatura geotermiczna (tzw. "jeden gruby i trzy wysokie problemy"). Problemy te utrudniają budowę kopalń, wydobycie węgla czy wykonanie obudowy chodników przewozowych. Lata badań teoretycznych i praktycznych podjętych w celu rozwiązania "jednego grubego i trzech wysokich problemów" zaowocowały decyzją o głębieniu szybów górniczych metodą zamrażania górotworu, opracowaniem technologii wydobycia węgla i odprowadzania gazu, zastosowaniem różnych metod obudowy chodników przewozowych, ulepszeniem systemów wentylacyjnych, systemów chłodzenia i środków ochrony osobistej, co zagwarantowało bezpieczną i wydajną produkcję na obszarach górniczych Huainan i Huaibei. W kopalniach Huainan i Huaibei wydobycie surowca w 2011 r. osiągnęło poziom 130 milionów ton; przy współczynniku wypadkowości niższym niż 0,3 na milion ton wydobycia.
Źródło:
AGH Journal of Mining and Geoengineering; 2012, 36, 3; 203-208
1732-6702
Pojawia się w:
AGH Journal of Mining and Geoengineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Machine learning-based business rule engine data transformation over high-speed networks
Autorzy:
Neelima, Kenpi
Vasundra, S.
Powiązania:
https://bibliotekanauki.pl/articles/38700094.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
CRISP-DM
data mining algorithms
business rule
prediction
classification
machine learning
deep learning
AI design
algorytmy eksploracji danych
reguła biznesowa
prognoza
klasyfikacja
nauczanie maszynowe
uczenie głębokie
projekt Sztucznej Inteligencji
Opis:
Raw data processing is a key business operation. Business-specific rules determine howthe raw data should be transformed into business-required formats. When source datacontinuously changes its formats and has keying errors and invalid data, then the effectiveness of the data transformation is a big challenge. The conventional data extraction andtransformation technique produces a delay in handling such data because of continuousfluctuations in data formats and requires continuous development of a business rule engine.The best business rule engines require near real-time detection of business rule and datatransformation mechanisms utilizing machine learning classification models. Since data iscombined from numerous sources and older systems, it is challenging to categorize andcluster the data and apply suitable business rules to turn raw data into the business-required format. This paper proposes a methodology for designing ensemble machine learning techniques and approaches for classifying and segmenting registered numbersof registered title records to choose the most suitable business rule that can convert theregistered number into the format the business expects, allowing businesses to provide customers with the most recent data in less time. This study evaluates the suggested modelby gathering sample data and analyzing classification machine learning (ML) models todetermine the relevant business rule. Experimentation employed Python, R, SQL storedprocedures, Impala scripts, and Datameer tools.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 1; 55-71
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies