Raw data processing is a key business operation. Business-specific rules determine howthe raw data should be transformed into business-required formats. When source datacontinuously changes its formats and has keying errors and invalid data, then the effectiveness of the data transformation is a big challenge. The conventional data extraction andtransformation technique produces a delay in handling such data because of continuousfluctuations in data formats and requires continuous development of a business rule engine.The best business rule engines require near real-time detection of business rule and datatransformation mechanisms utilizing machine learning classification models. Since data iscombined from numerous sources and older systems, it is challenging to categorize andcluster the data and apply suitable business rules to turn raw data into the business-required format. This paper proposes a methodology for designing ensemble machine learning techniques and approaches for classifying and segmenting registered numbersof registered title records to choose the most suitable business rule that can convert theregistered number into the format the business expects, allowing businesses to provide customers with the most recent data in less time. This study evaluates the suggested modelby gathering sample data and analyzing classification machine learning (ML) models todetermine the relevant business rule. Experimentation employed Python, R, SQL storedprocedures, Impala scripts, and Datameer tools.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00