Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "deblurring" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
A note on confidence intervals for deblurred images
Autorzy:
Biel, Michał
Szkutnik, Zbigniew
Powiązania:
https://bibliotekanauki.pl/articles/255867.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
inverse problems
confidence intervals
convolution
deblurring
Opis:
We consider pointwise asymptotic confidence intervals for images that are blurred and observed in additive white noise. This amounts to solving a stochastic inverse problem with a convolution operator. Under suitably modified assumptions, we fill some apparent gaps in the proofs published in [N. Bissantz, M. Birke, Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators, J. Multivariate Anal. 100 (2009), 2364-2375]. In particular, this leads to modified bootstrap confidence intervals with much better finite-sample behaviour than the original ones, the validity of which is, in our opinion, questionable. Some simulation results that support our claims and illustrate the behaviour of the confidence intervals are also presented.
Źródło:
Opuscula Mathematica; 2020, 40, 3; 361-373
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deblurring approach for motion camera combining FFT with α-confidence goal optimization
Autorzy:
Huang, Lve
Wu, Lushen
Xiao, Wenyan
Peng, Qingjin
Powiązania:
https://bibliotekanauki.pl/articles/174045.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
image deblurring
fast motion camera
confidence goal optimization
fast Fourier transform
high-railway defect detection
Opis:
Sharp images ensure success in the object detection and recognition from state-of-art deep learning methods. When there is a fast relative motion between the camera and the object being imaged during exposure, it will necessarily result in blurred images. To deblur the images acquired under the camera motion for high-quality images, a deblurring approach with relatively simple calculation is proposed. An accurate estimation method of point spread function is firstly developed by performing the Fourier transform twice. Artifacts caused by image direct deconvolution are then reduced by predicting the image boundary region, and the deconvolution model is optimized by an α-confidence statistics algorithm based on the greyscale consistency of the image adjacent columns. The proposed deblurring approach is finally carried out on both the synthetic-blurred images and the real-scene images. The experiment results demonstrate that the proposed image deblurring approach outperforms the existing methods for the images that are seriously blurred in direction motion.
Źródło:
Optica Applicata; 2020, 50, 2; 185-198
0078-5466
1899-7015
Pojawia się w:
Optica Applicata
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
MFFNet: A multi-frequency feature extraction and fusion network for visual processing
Autorzy:
Deng, Jinsheng
Zhang, Zhichao
Yin, Xiaoqing
Powiązania:
https://bibliotekanauki.pl/articles/2173678.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deblurring
multi-feature fusion
deep learning
attention mechanism
rozmywanie
fuzja wielu funkcji
głęboka nauka
mechanizm uwagi
Opis:
Convolutional neural networks have achieved tremendous success in the areas of image processing and computer vision. However, they experience problems with low-frequency information such as semantic and category content and background color, and high-frequency information such as edge and structure. We propose an efficient and accurate deep learning framework called the multi-frequency feature extraction and fusion network (MFFNet) to perform image processing tasks such as deblurring. MFFNet is aided by edge and attention modules to restore high-frequency information and overcomes the multiscale parameter problem and the low-efficiency issue of recurrent architectures. It handles information from multiple paths and extracts features such as edges, colors, positions, and differences. Then, edge detectors and attention modules are aggregated into units to refine and learn knowledge, and efficient multi-learning features are fused into a final perception result. Experimental results indicate that the proposed framework achieves state-of-the-art deblurring performance on benchmark datasets.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 3; art. no. e140466
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A single image deblurring approach based on a fractional order dark channel prior
Autorzy:
Yu, Xiaoyuan
Xie, Wei
Yu, Jinwei
Powiązania:
https://bibliotekanauki.pl/articles/2172119.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
blind image deblurring
fractional order dark channel prior
nonconvex problem
obraz rozmyty
rząd ułamkowy
problem niewypukły
Opis:
The dark channel prior has been successfully applied to solve the blind deblurring problem on different scene images. Since the dark channel of the blurry-noise image is similar to that of the corresponding clear image, the sparsity of the dark channel is less effective for image blind deblurring. Inspired by the fact that a fractional order calculation can inhibit the noise and preserve the texture information of the image, a fractional order dark channel prior is proposed for image deblurring in this paper. It is appropriate for kernel estimation where input images and intermediate images are processed by using a fractional order dark channel prior. Furthermore, the non-convex problem is solved by the half-quadratic splitting method, and some metrics are used for deblurring image quality assessment. Finally, quantitative and qualitative experimental results show that the proposed method achieves state-of-the-art results on synthetic and real blurry images.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 3; 441--454
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies