Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "data clustering" wg kryterium: Temat


Tytuł:
Method for the Player Profiling in the Turn-based Computer Games
Autorzy:
Bilski, Piotr
Antoniuk, Izabella
Łabędzki, Rafał
Powiązania:
https://bibliotekanauki.pl/articles/27311938.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
turn based games
player profiling
data clustering
automated classification
Opis:
The following paper presents the players profiling methodology applied to the turn-based computer game in the audience-driven system. The general scope are mobile games where the players compete against each other and are able to tackle challenges presented by the game engine. As the aim of the game producer is to make the gameplay as attractive as possible, the players should be paired in a way that makes their duel the most exciting. This requires the proper player profiling based on their previous games. The paper presents the general structure of the system, the method for extracting information about each duel and storing them in the data vector form and the method for classifying different players through the clustering or predefined category assignment. The obtained results show the applied method is suitable for the simulated data of the gameplay model and clustering of players may be used to effectively group them and pair for the duels.
Źródło:
International Journal of Electronics and Telecommunications; 2023, 69, 3; 461--468
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ant colony metaphor in a new clustering algorithm
Autorzy:
Boryczka, U.
Powiązania:
https://bibliotekanauki.pl/articles/969824.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
data mining
cluster analysis
ant clustering algorithm
Opis:
Among the many bio-inspired techniques, ant clustering algorithms have received special attention, especially because they still require much investigation to improve performance, stability and other key features that would make such algorithms mature tools for data mining. Clustering with swarm-based algorithms is emerging as an alternative to more conventional clustering methods, such as k-means algorithm. This proposed approach mimics the clustering behavior observed in real ant colonies. As a case study, this paper focuses on the behavior of clustering procedures in this new approach. The proposed algorithm is evaluated on a number of well-known benchmark data sets. Empirical results clearly show that the ant clustering algorithm (ACA) performs well when compared to other techniques.
Źródło:
Control and Cybernetics; 2010, 39, 2; 343-358
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use a cluster approach to organize and analyze data inside the cloud
Autorzy:
Boyko, N.
Mykhailyshyn, P.
Kryvenchuk, Y.
Powiązania:
https://bibliotekanauki.pl/articles/411080.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
information process
cloud computing
information system
cloud storage
data cloud
cloud service
cluster approach
clustering
Opis:
In this paper, description of a concept of cloud storage is offered. Cloud data storage is a model of an online storage where the data is being stored in multiple, divided between network servers that are provided for clients’ usage, mostly by a third-party company. The majority of the cloud storages (as opposed to file-exchangers) are offering almost boundless set of functions for free, by only limiting the size of the available storage (mostly a couple of gigabytes). Integrated data mining is being used for extracting potentially useful information from unprocessed data. The methods of data analysis are quite important with cloud computing. The implementation of the methods of integrated data mining inside the cloud will let the users receive the helpful information from non-structured or half-constructed web data sources. The main purpose of this work is to organize huge diverse data coming from different sources into clusters, depending on the type of data.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2018, 7, 2; 15-22
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrydowy model systemu ekspertowego do oceny podatników
Hybrid model of expert system for estimation of taxpayers
Autorzy:
Budziński, Ryszard
Misztal, Leszek
Powiązania:
https://bibliotekanauki.pl/articles/452818.pdf
Data publikacji:
2011
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
klasyfikacja podatników
teoria zbiorów przybliżonych
rozmyta analiza skupień
metoda AHP
eksploracja danych
taxpayers classification
rough set theory
fuzzy clustering
AHP method
data mining
Opis:
Proponowany model identyfikuje podatników na podstawie ich cech i właściwości, które wskazują na większą możliwość występowania problemów z przestrzeganiem prawa podatkowego. Eliminuje słabości występujące w znanych algorytmach zaliczających się do klasyfikatorów, jak również systemów wnioskujących oraz wspomagających typowanie stosowanych w administracji podatkowej. Jest to możliwe dzięki utworzeniu hybrydowego modelu, który dobrze odzwierciedla zachowania podatników. Model dzięki zastosowaniu nowoczesnych rozwiązań predysponuje do przyszłego utworzenia i uruchomienia w administracji bazującego na nim systemu ekspertowego.
Proposed model identifies taxpayers on the basis of their features and properties that point to bigger possibility of taxation law observance problems. Model eliminates weaknesses of well known classification algorithms, as well as expert systems and taxpayers typing assists applications used wildly in tax offices. It is possible because of designing hybrid model that reflects well behavior of payers. Applying modern concepts in model predisposes it for future implementation of software solution that can be used in taxation administration.
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2011, 12, 2; 101-111
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative Study of Techniques Used in Prediction of Student Performance
Autorzy:
Chauhan, Minakshi
Gupta, Varsha
Powiązania:
https://bibliotekanauki.pl/articles/1159721.pdf
Data publikacji:
2018
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Classification
Clustering
Data Mining Techniques
Educational Data Mining
Fuzzy Logic
Opis:
Providing high quality education is a major concern for higher educational institutions. The quality of education in higher institutions can be assessed by the teaching and learning process. The quality of the teaching learning process depends on the performance of instructor as well as performance of students involved. Analysis and prediction of student performance is key step to identify the poor academic performance. On the basis of prediction, the corrective actions must be taken to improve performance of students and enhance the quality of education system. In this study we surveyed the techniques commonly used to predict the performance of students and also analysed the factors affecting the student academic performance.
Źródło:
World Scientific News; 2018, 113; 185-193
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Exploiting multi-core and many-core parallelism for subspace clustering
Autorzy:
Datta, Amitava
Kaur, Amardeep
Lauer, Tobias
Chabbouh, Sami
Powiązania:
https://bibliotekanauki.pl/articles/331126.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
data mining
subspace clustering
multicore processor
many core processor
GPU computing
eksploracja danych
procesor wielordzeniowy
obliczenia GPU
Opis:
Finding clusters in high dimensional data is a challenging research problem. Subspace clustering algorithms aim to find clusters in all possible subspaces of the dataset, where a subspace is a subset of dimensions of the data. But the exponential increase in the number of subspaces with the dimensionality of data renders most of the algorithms inefficient as well as ineffective. Moreover, these algorithms have ingrained data dependency in the clustering process, which means that parallelization becomes difficult and inefficient. SUBSCALE is a recent subspace clustering algorithm which is scalable with the dimensions and contains independent processing steps which can be exploited through parallelism. In this paper, we aim to leverage the computational power of widely available multi-core processors to improve the runtime performance of the SUBSCALE algorithm. The experimental evaluation shows linear speedup. Moreover, we develop an approach using graphics processing units (GPUs) for fine-grained data parallelism to accelerate the computation further. First tests of the GPU implementation show very promising results.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 1; 81-91
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of Large Data Sets. Comparison of Performance of Chosen Algorithms
Klasyfikacja dużych zbiorów porównanie wydajności wybranych algorytmów
Autorzy:
Dudek, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/905663.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
clustering
classification
large data sets
Opis:
Researchers analyzing large (> 100,000 objects) data sets with the methods of cluster analysis often face the problem of computational complexity of algorithms, that sometimes makes it impossible to analyze in an acceptable time. Common solution of this problem is to use less computationally complex algorithms (like k-means), which in turn can in many cases give much worse results than for example algorithms using eigenvalues decomposition . The results of analysis of the actual sets of this type are therefore usually a compromise between quality and computational capabilities of computers. This article is an attempt to present the current state of knowledge on the classification of large datasets, and identify ways to develop and open problems.
Badacze analizujący przy pomocy metod analizy skupień duże (> 100.000 obiektów) zbiory danych, stają często przed problemem złożoności obliczeniowej algorytmów, uniemożliwiającej niekiedy przeprowadzenie analizy w akceptowalnym czasie. Jednym z rozwiązań tego problemu jest stosowanie mniej złożonych obliczeniowo algorytmów (hierarchiczne aglomeracyjne, k-średnich), które z kolei mogą w wielu sytuacjach dawać zdecydowanie gorsze rezultaty niż np. algorytmy wykorzystujące dekompozycję względem wartości własnych. Rezultaty rzeczywistych analiz tego typu zbiorów są więc zazwyczaj kompromisem pomiędzy jakością a możliwościami obliczeniowymi komputerów. Artykuł jest próbą przedstawienia aktualnego stanu wiedzy na temat klasyfikacji dużych zbiorów danych oraz wskazania dróg rozwoju i problemów otwartych.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2013, 285
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Internal Cluster Quality Indexes for Classification of Symbolic Data
Mierniki jakości klasyfikacji dla danych symbolicznych
Autorzy:
Dudek, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/905043.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
classification
clustering
cluster quality indexes
symbolic data
Opis:
This paper describes main classification methods used for symbolic data (e.g. data in form of: single quantitative value, categorical value, interval, multivalued variable, multivaliued variable with weights) presents difficulties of measuring clustering quality for symbolic data (such as lack of "traditional" data matrix), presents which of known indexes like Silhouette index, Ball index, Hartingan index, Baker and Hubert index, Huberta and Levine index, Ratkovski index, Ball index, Hartigan index, Krzanowski and Lai index, Scott index, Marriot index, Rubin index, Friedman index may be used for validation of such type of data and what indexes are specific only for symbolic data. Simulation results arc used to propose most adequate indexes for each classification algorithm.
Artykuł opisuje procedury klasyfikacyjne, które mogą być używane dla danych symbolicznych (tj. dla danych mogących być reprezentowanych w postaci: liczb, danych jakościowych, przedziałów liczbowych, zbioru wartości, zbioru wartości z wagami), przedstawia problemy związane z mierzeniem jakości klasyfikacji dla tych procedur (takie jak brak „klasycznej" macierzy danych) oraz przedstawia, które ze znanych indeksów, takich jak: Silhouette, indeks Calińskiego-Harabasza, indeks Bakera-Huberta, indeks Huberta-Levine, indeks Ratkowskiego, indeks Balia, indeks Hartigana, indeks Krzanowskiego-Lai, indeks Scotta, indeks Marriota, indeks Rubina i indeks Friedmana, mogą być wykorzystane dla tego typu danych oraz jakie są miary jakości podziału specyficzne dla danych symbolicznych. Na podstawie przeprowadzonych symulacji zaproponowane zostały indeksy faktycznie odzwierciedlające strukturę klas dla poszczególnych algorytmów klasyfikacyjnych.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 225
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Data mining tasks and methods – implementations in R
Autorzy:
Figielska, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/1397482.pdf
Data publikacji:
2020
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
data mining
R programming language
classification
prediction
clustering
association
Opis:
The aim of the paper is to present how some of the data mining tasks can be solved using the R programming language. The full R scripts are provided for preparing data sets, solving the tasks and analyzing the results.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2020, 14, 23; 27-49
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Spatial data clustering in independent mobile environment
Autorzy:
Gajewski, B.
Martyn, T.
Powiązania:
https://bibliotekanauki.pl/articles/114689.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
peer-to-peer
data clustering
OPTICS
mobile
lexical distance
Opis:
Most geolocation applications for mobile devices assume a constant connection with the network and high computational power nodes. However, with ever-developing devices it now becomes possible to establish peer-to-peer networks in case when the network can be unreachable due to special circumstances (like conflicts or natural disasters). In this paper, a method for clustering spatial data in mobile environment is discussed. A simple solution based on OPTICS algorithm with lexical distance is proposed for grouping the observations.
Źródło:
Measurement Automation Monitoring; 2016, 62, 5; 163-165
2450-2855
Pojawia się w:
Measurement Automation Monitoring
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Poczucie śląskości wśród Ślązaków – analiza empiryczna z wykorzystaniem modeli klas ukrytych
A sense of being Silesian – an empirical analysis with the use of latent class models
Autorzy:
Genge, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/425295.pdf
Data publikacji:
2013
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
latent class analysis
mixture model
model-based clustering
categorical data
Opis:
The paper focuses on latent class models and their application for quantitative data. Latent class modeling is one of multivariate analysis techniques of the contingency table and can be viewed as a special case of model-based clustering, for multivariate discrete data. It is assumed that each observation comes from one of the numbers of subpopulations, with its own probability distribution. We used latent class analysis for grouping and detecting homogeneity of Silesian people using poLCA package of R. We analyzed data collected by the Department of Social Pedagogy, University of Silesia in Katowice.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2013, 4(42); 48-59
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selection of clustering methods for wind turbines operational data
Dobór metod grupowania danych procesowych dla turbin wiatrowych
Autorzy:
Gibiec, M.
Barszcz, T.
Bielecka, M.
Powiązania:
https://bibliotekanauki.pl/articles/327686.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
diagnostyka maszyn
turbina wiatrowa
eksploracja danych
grupowanie
machine diagnostics
wind turbine
data mining
clustering
Opis:
Quickly growing number of monitored wind turbines has changed the needs for monitoring and diagnostic algorithms. The data from hundreds of monitoring systems are transferred to the diagnostic centers, where the data should be analyzed. High cost of labor created the need for automated diagnostic methods. The first task in this wide discipline is classification of the data and detection of malfunction states. The paper investigates application of data mining methods for classification of operational data from wind turbines. It is shown, that combination of the agglomeration method with the C-means clustering yields very good results and can be used for automated diagnostics of wind farms.
Szybko rosnąca liczba monitorowanych turbin wiatrowych zmieniła potrzeby w zakresie algorytmów monitorowania diagnostyki. Obecnie dane z setek systemów monitorowania przesyłane są do centrów diagnostycznych, gdzie muszą zostać przeanalizowane. Wysokie koszty pracy ekspertów spowodowały potrzebę zautomatyzowania metod diagnostycznych. Pierwszym zadaniem stała się automatyczna klasyfikacja danych i wykrywanie stanów niesprawności. Artykuł przedstawia zastosowanie metod "data mining" do klasyfikacji danych procesowych z turbin wiatrowych. Pokazano, że połączenie metody aglomeracji danych z metodą K-means daje bardzo dobre wyniki i może być zastosowane do zautomatyzowanej diagnostyki farm wiatrowych.
Źródło:
Diagnostyka; 2010, 4(56); 37-42
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New Interpretation of Principal Components Analysis
Autorzy:
Gniazdowski, Z.
Powiązania:
https://bibliotekanauki.pl/articles/91310.pdf
Data publikacji:
2017
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
determination coefficient
geometric interpretation of PCA
selection of principal components
clustering of variables
tensor data mining
anisotropy of data
współczynnik determinacji
interpretacja geometryczna
PCA
wybór głównych składników
klastrowanie zmiennych
dane tensorowe
anizotropia danych
Opis:
A new look on the principal component analysis has been presented. Firstly,ageometric interpretation of determination coefficient was shown. In turn, the ability to represent the analyzed data and their interdependencies in the form of easy-tounderstand basic geometric structures was shown. As a result of the analysis of these structures it was proposed to enrich the classical PCA. In particular, it was proposed a new criterion for the selection of important principal components and a new algorithm for clustering primary variables by their level of similarity to the principal components. Virtual and real data spaces, as well as tensor operations on data, have also been identified.The anisotropy of the data was identified too.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2017, 11, 16; 43-65
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Clustering and filtering of measurement data based on dynamic self-organizing neural networks
Grupowanie i filtracja danych pomiarowych z wykorzystaniem dynamicznych, samoorganizujących się sieci neuronowych
Autorzy:
Gorzałczany, M. B.
Rudziński, F.
Powiązania:
https://bibliotekanauki.pl/articles/153286.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
inteligencja obliczeniowa
samoorganizujące się sieci neuronowe
grupowanie
computational intelligence
self-organizing neural networks
clustering
filtering
measurement data
Opis:
The paper presents an application of dynamic self-organizing neural networks (introduced by the same authors) to clustering of complex, multidimensional measurement-type data using as an example the so-called Synthetic Control Chart Time Series available at WWW server of the Department of Information and Computer Science, the University of California at Irvine. Moreover, after deactivation of some of the mechanisms governing the operation of the proposed networks they become efficient tools for signal and data filtering. The filtering of Equiptemp measurement data set available from Time Series Library by means of the proposed networks is also briefly presented.
Artykuł prezentuje zastosowanie tzw. dynamicznych samoorganizujących się sieci neuronowych (zaproponowanych przez autorów tej pracy) do grupowania złożonych, wielowymiarowych danych pomiarowych na przykładzie zbioru danych Synthetic Control Chart Time Series dostępnego na serwerze WWW Uniwersytetu Kalifornijskiego w Irvine (Department of Information and Computer Science). Proponowane sieci, w trakcie procesu uczenia, są w stanie dzielić swoje łańcuchy neuronów na podłańcuchy, ponownie łączyć wybrane podłańcuchy ze sobą oraz dynamicznie zmieniać całkowitą liczbę neuronów sieci. Cechy te umożliwiają im jak najlepsze dopasowanie się do nieznanych z góry struktur "zakodowanych" w danych. Funkcjonowanie proponowanych sieci zilustrowano najpierw na przykładzie złożonego zbioru danych dwuwymiarowych typu dwóch spiral. Po wyłączeniu pewnych mechanizmów rządzących funkcjonowaniem proponowanych sieci stają się one również efektywnymi narzędziami filtracji sygnałów. Przykłady filtracji danych pomiarowych zawartych w zbiorze Equiptemp pochodzącym z tzw. Time Series Library są również przedstawione w artykule.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 12, 12; 1416-1419
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Grade analysis of data from the European Economic Survey 2005 on Economic Climate in Polish Servicing Sector
Autorzy:
Grabowska, G.
Wiech, M.
Powiązania:
https://bibliotekanauki.pl/articles/969675.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
clustering
data visualization
grade correspondence analysis
overrepresentation
rank correlation
Opis:
The anonymous data from 1352 companies concerning the economic climate in Polish servicing sector from the European Economic Survey 2005 was obtained by courtesy of The Polish Chamber of Commerce. The Grade Correspondence Analysis (GCA) with posterior clustering (GCCA) is introduced and applied to this data. The main task of this analysis is to create the first view of data and to reveal their latent structure. This provides an insight into the economic factors and enables making conclusions about business conditions in Poland.
Źródło:
Control and Cybernetics; 2009, 38, 3; 783-810
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies