- Tytuł:
- Finite element analysis of thermal stress in Cu2O coating synthesized on Cu substrate
- Autorzy:
- Shorinov, O.
- Powiązania:
- https://bibliotekanauki.pl/articles/24200560.pdf
- Data publikacji:
- 2022
- Wydawca:
- Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
- Tematy:
-
stress-strain state
residual stress
oxide layers
thermo-mechanical modelling
coefficient of thermal expansion
stan naprężenie-odkształcenie
naprężenie szczątkowe
warstwy tlenkowe
modelowanie termomechaniczne
współczynnik rozszerzalności cieplnej - Opis:
- Purpose: The paper aims to find the magnitude and nature of thermal residual stresses that occur during cooling of a copper sample with a thermally synthesized oxide layer of Cu2O. Design/methodology/approach: Thermo-mechanical analysis was performed by the finite element method using Ansys Software. The results of thermal analysis were used to study the resulting stress-strain state of the thin film/coating system after cooling. Findings: Based on the modeling results, the paper determined the most stress-strain areas of the sample with a coating, which are the free edges of the interfaces between the copper substrate and the Cu2O oxide layer. Research limitations/implications: The main limitations of the study are the use of certain simplifications in the condition setup, for instance, uniform cooling of the thin film/coating system, homogeneity and isotropy of substrate and thin film materials, invariance of their properties with temperature changes, etc. Practical implications: The results obtained can be used to control the stress-strain state of the thin film/coating system and prevent deformations and destruction of thin-film structures during their production and operation of products with them. Originality/value: The study of new promising methods for the formation of oxide nanostructures, for instance in a plasma environment, requires a sufficient theoretical basis in addressing the origin and development of stresses.
- Źródło:
-
Archives of Materials Science and Engineering; 2022, 115, 2; 58--65
1897-2764 - Pojawia się w:
- Archives of Materials Science and Engineering
- Dostawca treści:
- Biblioteka Nauki