Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "classifier fusion" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Data sources diversity in technical objects state assessment with information fusion techniques
Różnorodność źródeł danych w określaniu stanu obiektów technicznych z zastosowaniem technik fuzji informacji
Autorzy:
Jamrozik, W.
Powiązania:
https://bibliotekanauki.pl/articles/327580.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
diagnostyka maszyn
termowizja
fuzja informacji
machine diagnostics
termovision
classifier fusion
Opis:
The paper deals with a relationship between diversity of diagnostic signals sources and efficiency of technical objects states assessment with use of classifier fusion techniques. There is often stated that there should be some differences in sources of signals that are classified and fused. The intuition tells that none or minimal improvement of classification rate is gained when the diversity within the fused classifier set is low. To prove this thesis an active diagnostic experiment was carried out. Diagnostic signals were generated on basis of the thermogram sequences acquired during rotating machinery operation by two IR-cameras. Because in both sequences regions of interests representing the same assemblies of the machine are present, it can be assumed that there is hardware redundancy applied. With use of k-NN classifiers and fuzzy integral and proportional conflict redistribution aggregation rules, the state of the machine is possible to be assessed. The analysis of obtained results showed that there was no strong relationship between the diversity of classifiers and the efficiency of state classification.
W artykule omówiono związek pomiędzy różnorodnością źródeł sygnałów diagnostycznych a efektywnością oceny stanu technicznego maszyny z wykorzystaniem technik fuzji klasyfikatorów. Często zasadne jest twierdzenie, że sygnały diagnostyczne powinny być pozyskiwane z różnorodnych źródeł. Intuicyjnie można przyjąć, że w przypadku wykorzystania w procesie fuzji zbliżonych klasyfikatorów, zwiększenie sprawności klasyfikacji będzie bliskie zeru. W celu udowodnienia tej tezy przeprowadzono aktywny eksperyment diagnostyczny. Sygnały diagnostyczne zostały pozyskane z sekwencji termogramów przedstawiających pracującą maszynę wirnikową. Sygnały zarejestrowano z wykorzystaniem dwóch kamer termowizyjnych. Klasyfikacji stanu maszyny dokonano przy użyciu klasyfikatora k najbliższych sąsiadów, a w procesie fuzji klasyfikatorów wykorzystano całkę rozmytą oraz regułę proporcjonalnej redystrybucji konfliktów jako operatory agregacji. Analiza otrzymanych wyników pokazała, że nie występuje silna relacja pomiędzy różnorodnością klasyfikatorów, a efektywnością oceny stanu technicznego.
Źródło:
Diagnostyka; 2010, 3(55); 3-8
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamical ensemble selection - experimental analysis on homogenous pool of classifiers
Autorzy:
Baczyńska, P.
Burduk, R.
Powiązania:
https://bibliotekanauki.pl/articles/334009.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
classifier fusion
dynamic ensemble selection
multiple classifier system
fuzja klasyfikatorów
wybór dynamicznego zespołu
system klasyfikatorowy
Opis:
The paper presents the dynamic ensemble selection based on the analysis of the decision profiles. These profiles are obtained from a posteriori probability functions returned from the base classifiers during the training process. Presented in the paper dynamic ensemble selection algorithms are dedicated to the binary classification task. In order to verify these algorithms, a number of experiments have been carried out on several medical data sets. The proposed dynamic ensemble selection is experimentally compared against the ensemble with the sum fusion method. As base classifiers we used the pool of homogeneous classifiers. The obtained results are promising because we could improve the classification accuracy of the ensemble classifier.
Źródło:
Journal of Medical Informatics & Technologies; 2015, 24; 107-112
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The proposal of calculation classifier weights for an assembly of classifiers
Autorzy:
Burduk, R.
Powiązania:
https://bibliotekanauki.pl/articles/333595.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
classifier fusion
static classifiers selection
multiple classifier system
fuzja informacji
fuzja klasyfikatorów
selekcja klasyfikatorów
system klasyfikujący wielokrotny
Opis:
The selection of classifiers is one of the important problems in the creation of ensemble of classifiers. The paper presents the static selection in which a new method of calculating the weights of individual classifiers is used. The obtained weights can be interpreted in the context of the interval logic. It means that the particular weights will not be provided precisely but their lower and upper values will be used. A number of experiments have been carried out on several medical data sets.
Źródło:
Journal of Medical Informatics & Technologies; 2014, 23; 181-186
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Potential Contour Ensembles
Autorzy:
Tomczyk, Arkadiusz
Powiązania:
https://bibliotekanauki.pl/articles/1373679.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Jagielloński. Wydawnictwo Uniwersytetu Jagiellońskiego
Tematy:
active contours
classifier ensembles
information fusion
potential contours
Opis:
In the paper a contour ensemble image segmentation concept is presented. It bases on the previously observed relationship between contours and classifiers. Because of the specificity of the active contour segmentation the method requires a special procedure to obtain ensemble members with desired properties. In this work it is achieved by early stopping of randomized optimization algorithm. The results of the method are illustrated with a practical problem of heart ventricle segmentation by means of active potential contours. Automatically found contours may be of use in a process of pulmonary embolism diagnosis.
Źródło:
Schedae Informaticae; 2015, 24; 113-121
0860-0295
2083-8476
Pojawia się w:
Schedae Informaticae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Measures of Diversity and the Classification Error in the Multiple-model Approach
Miary zróżnicowania modeli a błąd klasyfikacji w podejściu wielomodelowym
Autorzy:
Gatnar, Eugeniusz
Powiązania:
https://bibliotekanauki.pl/articles/905052.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Multiple-model approach
Model fusion
Classifier ensemble
Diversity measures
Opis:
Multiple-model approach (model aggregation, model fusion) is most commonly used in classification and regression. In this approach K component (single) models C1(x), C1(x), … , CK(x) are combined into one global model (ensemble) C*(x), for example using majority voting: K C* = arg max {Σ I (Ck(x)=y)} (1) y k=1 Turner i Ghosh (1996) proved that the classification error of the ensemble C*(x) depends on the diversity of the ensemble members. In other words, the higher diversity of component models, the lower classification error of the combined model. Since several diversity measures for classifier ensembles have been proposed so far in this paper we present a comparison of the ability of selected diversity measures to predict the accuracy of classifier ensembles.
Podejście wielomodelowe (agregacja modeli), stosowane najczęściej w analizie dyskryminacyjnej i regresyjnej, polega na połączeniu M modeli składowych C1(x), ..., CM(x) jeden model globalny C*(x): K C* = arg max {Σ I (Cm(x)=y)} y k=1 Turner i Ghosh (1996) udowodnili, że błąd klasyfikacji dla modelu zagregowanego C*(x) zależy od stopnia podobieństwa (zróżnicowania) modeli składowych. Inaczej mówiąc, najbardziej dokładny model C*(x) składa się z modeli najbardziej do siebie niepodobnych, tj. zupełnie inaczej klasyfikujących te same obiekty. W literaturze zaproponowano kilka miar pozwalających ocenić podobieństwo (zróżnicowanie) modeli składowych w podejściu wielomodelowym. W artykule omówiono związek znanych miar zróżnicowania z oceną wielkości błędu klasyfikacji modelu zagregowanego.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 225
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Combining different types of classifiers
Łączenie różnych rodzajów modeli dyskryminacyjnych
Autorzy:
Gatnar, Eugeniusz
Powiązania:
https://bibliotekanauki.pl/articles/907037.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
multiple-model approach
model fusion
classifier ensemble
diversity measures
Opis:
Model fusion has proved to be a very successful strategy for obtaining accurate models in classification and regression. The key issue, however, is the diversity of the component classifiers because classification error of an ensemble depends on the correlation between its members. The majority of existing ensemble methods combine the same type of models, e.g. trees. In order to promote the diversity of the ensemble members, we propose to aggregate classifiers of different types, because they can partition the same classification space in very different ways (e.g. trees, neural networks and SVMs).
Łączenie modeli okazało się być bardzo efektywną strategią poprawy jakości predykcji modeli dyskryminacyjnych. Kluczowym zagadnieniem, jak wynika z twierdzenia Turnera i Ghosha (1996), jest jednak stopień różnorodności agregowanych modeli, tzn. im większa korelacja między wynikami klasyfikacji tych modeli, tym większy błąd. Większość znanych metod łączenia modeli, np. RandomForest zaproponowany przez Breimana (2001), agreguje modele tego samego typu w różnych przestrzeniach cech. Aby zwiększyć różnice między pojedynczymi modelami, w referacie zaproponowano łączenie modeli różnych typów, które zostały zbudowane w tej samej przestrzeni zmiennych (np. drzewa klasyfikacyjne i modele SVM). W eksperymentach wykorzystano 5 klas modeli: liniowe i kwadratowe modele dyskryminacyjne, drzewa klasyfikacyjne, sieci neuronowe, oraz modele zbudowane za pomocą metody £-najbliższych sąsiadów (k-NN) i metody wektorów nośnych (SVM). Uzyskane rezultaty pokazują, że modele zagregowane powstałe w wyniku łączenia różnych modeli są bardziej dokładne niż gdy modele składowe są tego samego typu.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2008, 216
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies