The paper presents the dynamic ensemble selection based on the analysis of the decision profiles. These profiles are obtained from a posteriori probability functions returned from the base classifiers during the training process. Presented in the paper dynamic ensemble selection algorithms are dedicated to the binary classification task. In order to verify these algorithms, a number of experiments have been carried out on several medical data sets. The proposed dynamic ensemble selection is experimentally compared against the ensemble with the sum fusion method. As base classifiers we used the pool of homogeneous classifiers. The obtained results are promising because we could improve the classification accuracy of the ensemble classifier.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00