Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "backpropagation neural network" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Adptive heading control of underactuated unmanned surface vehicle based on improved backpropagation neural network
Autorzy:
Dong, Zaopeng
Li, Jiakang
Liu, Wei
Zhang, Haisheng
Qi, Shijie
Zhang, Zhengqi
Powiązania:
https://bibliotekanauki.pl/articles/32917278.pdf
Data publikacji:
2023
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
underactuated unmanned surface vehicle
backpropagation neural network controller
heading control
hyperbolic tangent function
Opis:
Aiming at the challenges to the accurate and stable heading control of underactuated unmanned surface vehicles arising from the nonlinear interference caused by the overlay and the interaction of multi interference, and also the uncertainties of model parameters, a heading control algorithm for an underactuated unmanned surface vehicle based on an improved backpropagation neural network is proposed. Based on applying optimization theory to realize that the underactuated unmanned surface vehicle tracks the desired yaw angle and maintains it, the improved momentum of weight is combined with an improved tracking differentiator to improve the robustness of the system and the dynamic property of the control. A hyperbolic tangent function is used to establish the nonlinear mappings an approximate method is adopted to summarize the general mathematical expressions, and the gradient descent method is applied to ensure the convergence. The simulation results show that the proposed algorithm has the advantages of strong robustness, strong anti-interference and high control accuracy. Compared with two commonly used heading control algorithms, the accuracy of the heading control in the complex environment of the proposed algorithm is improved by more than 50%.
Źródło:
Polish Maritime Research; 2023, 1; 54-64
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
2D Cadastral Coordinate Transformation using extreme learning machine technique
Autorzy:
Ziggah, Y. Y.
Issaka, Y.
Laari, P. B.
Hui, Z.
Powiązania:
https://bibliotekanauki.pl/articles/145372.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
transformacja współrzędnych
sieci neuronowe
dane geodezyjne
sieć radialna
coordinate transformation
extreme learning machine
backpropagation neural network
radial basis function neural network
geodetic datum
Opis:
Land surveyors, photogrammetrists, remote sensing engineers and professionals in the Earth sciences are often faced with the task of transferring coordinates from one geodetic datum into another to serve their desired purpose. The essence is to create compatibility between data related to different geodetic reference frames for geospatial applications. Strictly speaking, conventional techniques of conformal, affine and projective transformation models are mostly used to accomplish such task. With developing countries like Ghana where there is no immediate plans to establish geocentric datum and still rely on the astro-geodetic datums as it national mapping reference surface, there is the urgent need to explore the suitability of other transformation methods. In this study, an effort has been made to explore the proficiency of the Extreme Learning Machine (ELM) as a novel alternative coordinate transformation method. The proposed ELM approach was applied to data found in the Ghana geodetic reference network. The ELM transformation result has been analysed and compared with benchmark methods of backpropagation neural network (BPNN), radial basis function neural network (RBFNN), two-dimensional (2D) affine and 2D conformal. The overall study results indicate that the ELM can produce comparable transformation results to the widely used BPNN and RBFNN, but better than the 2D affine and 2D conformal. The results produced by ELM has demonstrated it as a promising tool for coordinate transformation in Ghana.
Źródło:
Geodesy and Cartography; 2018, 67, 2; 321-343
2080-6736
2300-2581
Pojawia się w:
Geodesy and Cartography
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of rockburst potential in kimberlite using fruit fly optimization algorithm and generalized regression neural networks
Ocena stanu zagrożenia tąpania i wyrzutów skał w kimeberlite z wykorzystaniem algorytmu muszki owocowej i sieci neuronowej realizującej uogólnioną regresję (GRNN)
Autorzy:
Pu, Yuanyuan
Apel, Derek B.
Pourrahimian, Yashar
Chen, Jie
Powiązania:
https://bibliotekanauki.pl/articles/219162.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ocena możliwości wystąpienia wyrzutów skał
sieć neuronowa realizująca regresję uogólnioną (GRNN)
algorytm muszki owocowej
sieć neuronowa realizującą propagację wsteczną (BPNN)
rockburst potential evaluation
generalized regression neural networks (GRNN)
fruit fly algorithm
backpropagation neural network (BPNN)
Opis:
Rockburst is a common engineering geological hazard. In order to evaluate rockburst liability in kimberlite at an underground diamond mine, a method combining generalized regression neural networks (GRNN) and fruit fly optimization algorithm (FOA) is employed. Based on two fundamental premises of rockburst occurrence, depth, σθ, σc, σt, B1, B2, SCF, Wet are determined as indicators of rockburst, which are also input vectors of GRNN model. 132 groups of data obtained from rockburst cases from all over the world are chosen as training samples to train the GRNN model; FOA is used to seek the optimal parameter σ that generates the most accurate GRNN model. The trained GRNN model is adopted to evaluate burst liability in kimberlite pipes. The same eight rockburst indicators are acquired from lab tests, mine site and FEM model as test sample features. Evaluation results made by GRNN can be confirmed by a rockburst case at this mine. GRNN do not require any prior knowledge about the nature of the relationship between the input and output variables and avoid analyzing the mechanism of rockburst, which has a bright prospect for engineering rockburst potential evaluation.
Tąpnięcia skał są powszechnym i ogólnie znanym zagrożeniem dla środowiska geologicznego oraz dla budowli. Do oceny skłonności skał do tąpania w podziemnej kopalni diamentów w Kimberlite zastosowano metodę stanowiącą połączenie sieci neuronowych realizujących uogólnioną regresję i algorytm muszki owocowej. W oparciu o dwie podstawowe przesłanki wystąpienia tąpnięcia, głębokość oraz σθ, σc, σt, wielkości B1, B2, SCF, Wet określone zostały jako wskaźniki wystąpienia tąpnięcia i następnie wy-korzystane jako wektory wejściowe w modelu sieci neuronowych GRNN. Zestawiono 132 zbiory danych o przypadkach tapnięć z całego świata i wykorzystano je jako zbiory uczące dla modelu sieci neuronowej realizującej uogólnioną regresję. Algorytm muszki owocowej wykorzystano do znalezienia optymalnej wartości parametru σ który umożliwi wygenerowanie najbardziej dokładnego modelu sieci neuronowej GRNN. Po treningu, model sieci GRNN wykorzystany został do oceny możliwości wystąpienia tąpnięcia w Kimberlite. Te same osiem wskaźników oceny skłonności wyrzutowej skały otrzymano na podstawie badań laboratoryjnych, z analiz prowadzonych w kopalni oraz w oparciu o metodę elementów skończonych, wyniki te wykorzystano następnie jako próbki danych. Wyniki uzyskane przy zastosowaniu sieci neuronowych realizujących regresję uogólnioną potwierdzone zostały przez wyniki uzyskane w trakcie wyrzutu w kopalni. Metoda sieci neuronowych nie wymaga uprzedniej wiedzy o naturze zależności pomiędzy zmiennymi wejściowymi i wyjściowymi i pozwala uniknąć analiz mechanizmu wyrzutu i tąpnięcia, co jest cechą pożądaną z punktu widzenia inżynierów odpowiedzialnych za ocenę skłonności skał do wyrzutu.
Źródło:
Archives of Mining Sciences; 2019, 64, 2; 279-296
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predictive neural network in multipurpose self-tuning controller
Autorzy:
Bondar, Oleksiy
Powiązania:
https://bibliotekanauki.pl/articles/386771.pdf
Data publikacji:
2020
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
artificial neural network
adaptive regulator
backpropagation algorithm
system modelling
Opis:
A very important problem in designing of controlling systems is to choose the right type of architecture of controller. And it is always a compromise between accuracy, difficulty in setting up, technical complexity and cost, expandability, flexibility and so on. In this paper, multipurpose adaptive controller with implementation of artificial neural network is offered as an answer to a wide range of tasks related to regulation. The effectiveness of the approach is demonstrated by the example of an adaptive thermostat. It also compares its capabilities with those of classic PID controller. The core of this approach is the use of an artificial neural network capable of predicting the behaviour of controlled object within its known range of parameters. Since such a network, being trained, is a model of a regulated system with arbitrary precision, it can be analysed to make optimal management decisions at the moment or in a number of steps. Network learning algorithm is backpropagation and its modified version is used to analyse an already trained network in order to find the optimal solution for the regulator. Software implementation, such as graphical user interface, routines related to neural network and many other, is done using Java programming language and Processing open-source integrated development environment.
Źródło:
Acta Mechanica et Automatica; 2020, 14, 2; 114-120
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A learning paradigm for motion control of mobile manipulators
Autorzy:
Abdessemed, F.
Monacelli, E.
Benmahammed, K.
Powiązania:
https://bibliotekanauki.pl/articles/908373.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
manipulator ruchomy
sieć neuronowa
unikanie przeszkód
mobile manipulator
neural network
backpropagation
obstacle avoidance
Opis:
Motion control of a mobile manipulator is discussed. The objective is to allow the end-effector to track a given trajectory in a fixed world frame. The motion of the platform and that of the manipulator are coordinated by a neural network which is a kind of graph designed from the kinematic model of the system. A learning paradigm is used to produce the required reference variables for each of the mobile platform and the robot manipulator for an overall coordinate behavior. Simulation results are presented to show the effectiveness of the proposed scheme.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2006, 16, 4; 475-484
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recurrent neural identification and control of a continuous bioprocess via first and second order learning
Autorzy:
Baruch, I.
Mariaca-Gaspar, C. R.
Powiązania:
https://bibliotekanauki.pl/articles/385133.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
backpropagation learning
direct adaptive neural control
indirect adaptive sliding mode control
Kalman filter recurrent neural network identifier
Levenberg-Marquardt learning
Opis:
This paper applies a new Kalman Filter Recurrent Neural Network (KFRNN) topology and a recursive Levenberg-Mar quardt (L-M) learning algorithm capable to estimate para meters and states of highly nonlinear unknown plant in noisy environment. The proposed KFRNN identifier, learned by the Backpropagation and L-M learning algorithm, was incorporated in a direct and indirect adaptive neural con trol schemes. The proposed control schemes were applied for real-time recurrent neural identification and control of a continuous stirred tank bioreactor model, where fast convergence, noise filtering and low mean squared error of reference tracking were achieved.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2010, 4, 4; 37-52
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applying neural network in computing filling coefficient of four-stroke internal combustion engine
Zastosowanie sieci neuronowej do obliczania współczynnika napełnienia cylindra czterosuwowego silnika spalania wewnętrznego
Autorzy:
Bera, P.
Powiązania:
https://bibliotekanauki.pl/articles/368899.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
sieć neuronowa
trenowanie z nauczycielem
wsteczna propagacja błędów
silnik spalinowy
współczynnik napełnienia cylindra
neural network
supervised training
backpropagation
internal combustion engine
filling coefficient
Opis:
Neural networks consist of many simple elements operating in parallel. In supervised training they are capable of finding their own solution to a particular problem, given only examples of proper behavior. It is a very useful method of solving complex, non-linear problems. The following article discusses the usage of artificial neural network to compute the value of filling coefficient of four-stroke internal combustion engines as the function of crankshaft rotational speed and throttle opening angle. The paper presents the idea of a static, two-layer feedforward network trained with the basic backpropagation algorithm in which the weights and biases are updated in the direction of the negative gradient. The article discusses network architecture and data structure, training parameters and result analysis.
Sieci neuronowe zbudowane są z dużej liczby prostych elementów działających równolegle. Uczenie z nauczycielem pozwala sieci znaleźć nowe rozwiązanie konkretnego problemu tylko na podstawie zestawu znanych poprawnych zachowań. Jest to skuteczna metoda rozwiązywania złożonych, nieliniowych zagadnień. W poniższym artykule przedstawiono przykład wykorzystania sztucznej sieci neuronowej do obliczania wartości współczynnika napełnienia cylindra czterosuwowych silników spalinowych spalania wewnętrznego w funkcji prędkości obrotowej wału korbowego i kąta otwarcia przepustnicy. Przedstawiono statyczną, dwuwarstwową sieć trenowaną podstawową metodą wstecznej propagacji błędów, w której wartości wag i progów zmieniają się w kierunku ujemnego gradientu na powierzchni błędu. W artykule omówiono budowę sieci i strukturę danych uczących, parametry trenowania oraz analizę wyników.
Źródło:
Mechanics and Control; 2011, 30, 2; 53-59
2083-6759
2300-7079
Pojawia się w:
Mechanics and Control
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies