Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "arima" wg kryterium: Temat


Tytuł:
Cuban consumer price index forecasting through transformer with attention
Autorzy:
Rosado, Reynaldo
Toledano-López, Orlando G.
González, Hector R.
Abreu, Aldis J.
Hernandez, Yanio
Powiązania:
https://bibliotekanauki.pl/articles/27314241.pdf
Data publikacji:
2023
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
consumer price index
time series forecasting
transformer with attention
ARIMA
LSTM
Opis:
Recently, time series forecasting modelling in the Con‐ sumer Price Index (CPI) has attracted the attention of the scientific community. Several research projects have tackled the problem of CPI prediction for their countries using statistical learning, machine learning and deep neural networks. The most popular approach to CPI in several countries is the Autoregressive Integrated Mov‐ ing Average (ARIMA) due to the nature of the data. This paper addresses the Cuban CPI forecasting problem using Transformer with attention model over univariate dataset. The fine tuning of the lag parameter shows that Cuban CPI has better performance with small lag and that the best result was in = 1. Finally, the comparative results between ARIMA and our proposal show that the Transformer with attention has a very high performance despite having a small data set.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2023, 17, 2; 12--17
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Identification of Seasonality in the Housing Market Using the X13-ARIMA-SEATS Model
Identyfikacja sezonowości na rynku mieszkaniowym przy użyciu modelu X13-ARIMA-SEATS
Autorzy:
Mach, Łukasz
Dąbrowski, Ireneusz
Wotzka, Daria
Frącz, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/28407797.pdf
Data publikacji:
2023
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
seasonality
real estate market
X13-ARIMA-SEATS
sezonowość
rynek nieruchomości
Opis:
Aim: In the conducted research, profiles of seasonality in the housing market were determined, which provided an opportunity to answer two fundamental questions: what is the nature of harmonic variation in the seasonality and periodicity of the studied components of the construction process? what parameters of the ARIMA model optimally describe the construction market? Methodology: In the conducted research, using the X13-ARIMA-SEATS model, seasonal decomposition was carried out in the various stages of the housing construction process. Results: The research process conducted to identify seasonal fluctuations in the housing construction market showed that harmonic fluctuation profiles can be identified on an annual basis. An analysis of seasonal fluctuations was carried out for each of the three stages of the housing construction process, while also checking how these profiles function for Poland in general, and for individual investors, and for those building apartments for sale or to rent. The study showed that the market for real estate development activity differs in its seasonal characteristics from that of individual investors. Implications and recommendations: The conclusions obtained from the research can provide support in the decision-making process, both from a macro and microeconomic perspective. Parameterisation of the occurring fluctuations, and taking them into account in the process of developing a forecast can provide decision-making rationale in the implementation of macroprudential and financial stability policies Originality/Value: A novelty is in the demonstration that the residential real estate market in Poland shows different seasonal parameters, divided into the market of individual investors and investors who build apartments for sale or rent.
Cel: W przeprowadzonych badaniach wyznaczono profile sezonowości na rynku mieszkaniowym, co dało możliwość odpowiedzi na dwa zasadnicze pytania: Jaki charakter ma harmoniczna zmienność sezonowości i okresowości badanych składowych procesu budowlanego? Jakie parametry modelu ARIMA optymalnie opisują rynek budowlany? Metodyka: W przeprowadzonych badaniach, wykorzystując model X13-ARIMA-SEATS, dokonano dekompozycji sezonowej w poszczególnych etapach procesu budownictwa mieszkaniowego. Wyniki: Proces badawczy przeprowadzony w celu identyfikacji wahań sezonowych na rynku budownictwa mieszkaniowego wykazał, że można zidentyfikować harmoniczne profile wahań w ujęciu rocznym. Analizę wahań sezonowych przeprowadzono dla każdego z trzech etapów procesu budowy mieszkań, sprawdzając jednocześnie, jak profile te kształtują się dla Polski ogółem oraz dla inwestorów indywidualnych i budujących mieszkania na sprzedaż lub wynajem. Badanie wykazało, że rynek działalności deweloperskiej różni się charakterystyką sezonową od rynku inwestorów indywidualnych. Implikacje i rekomendacje: Wnioski uzyskane z badań mogą stanowić wsparcie w procesie podejmowania decyzji z perspektywy zarówno makro-, jak i mikroekonomicznej. Parametryzacja występujących wahań i uwzględnienie ich w procesie opracowywania prognozy może stanowić przesłankę decyzyjną w realizacji inwestycji deweloperskich. Oryginalność/Wartość: Nowością jest wykazanie, że rynek nieruchomości mieszkaniowych w Polsce charakteryzuje się różnymi parametrami sezonowymi w podziale na rynek inwestorów indywidualnych oraz inwestorów wznoszących mieszkania na sprzedaż lub wynajem.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2023, 27, 4; 29-43
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The modeling of earnings per share of Polish companies for the post-financial crisis period using random walk and ARIMA models
Autorzy:
Kuryłek, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/19322602.pdf
Data publikacji:
2023-05-11
Wydawca:
Uniwersytet Warszawski. Wydawnictwo Naukowe Wydziału Zarządzania
Tematy:
earnings per share
time series
random walk
ARIMA
financial forecasting
Warsaw
Stock Exchange
Opis:
The proper forecasting of listed companies’ earnings is crucial for their appropriate pricing. This paper compares forecast errors of different univariate time-series models applied for the earnings per share (EPS) data for Polish companies from the period between the last financial crisis of 2008–2009 and the pandemic shock of 2020. The best model is the seasonal random walk (SRW) model across all quarters, which describes quite well the behavior of the Polish market compared to other analyzed models. Contrary to the findings regarding the US market, this time-series behavior is well described by the naive seasonal random walk model, whereas in the US the most adequate models are of a more sophisticated ARIMA type. Therefore, the paper demonstrates that conclusions drawn for the US might not hold for emerging economies because of the much simpler behavior of these markets that results in the absence of autoregressive and moving average parts.
Źródło:
Journal of Banking and Financial Economics; 2023, 1(19); 26-43
2353-6845
Pojawia się w:
Journal of Banking and Financial Economics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Time series analysis of fossil fuels consumption in slovakia by arima model
Autorzy:
Michalková, Mária
Pobočíková, Ivana
Powiązania:
https://bibliotekanauki.pl/articles/2204654.pdf
Data publikacji:
2023
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
ARIMA model
coal
gas
consumption
Slovakia
prediction
Opis:
According to the Green Deal, the carbon neutrality of the European Union (EU) should be reached partly by the transition from fossil fuels to alternative renewable sources. However, fossil fuels still play an essential role in energy production, and are widely used in the world with no alternative to be completely replaced with, so far. In recent years, we have observed the rapidly growing prices of commodities such as oil or gas. The analysis of past fossil fuels consumption might contribute significantly to the responsible formulation of the energy policy of each country, reflected in policies of related organisations and the industrial sector. Over the years, a number of papers have been published on modelling production and consumption of fossil and renewable energy sources on the level of national economics, industrial sectors and households, exploiting and comparing a variety of approaches. In this paper, we model the consumption of fossil fuels (gas and coal) in Slovakia based on the annual data during the years 1965–2020. To our knowledge, no such model, which analyses historical data and provides forecasts for future consumption of gas and coal, respectively, in Slovakia, is currently available in the literature. For building the model, we have used the Box–Jenkins methodology. Because of the presence of trend in the data, we have considered the autoregressive integrated moving average (ARIMA (p,d,q)) model. By fitting models with various combinations of parameters p, d, q, the best fitting model has been chosen based on the value of Akaike’s information criterion. According to this, the model for coal consumption is ARIMA(0, 2, 1) and for gas consumption it is ARIMA(2, 2, 2).
Źródło:
Acta Mechanica et Automatica; 2023, 17, 1; 35--43
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of Earth Rotation Parameters With the Use of Rapid Products From IGS, Code and GFZ Data Centres Using ARIMA and Kriging - A Comparison
Autorzy:
Michalczak, Maciej
Ligas, Marcin
Kudrys, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/2174952.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Centrum Badań Kosmicznych PAN
Tematy:
ARIMA
kriging
polar motion
length of day
earth rotation parameters
Opis:
Real-time prediction of Earth Orientation Parameters is necessary for many advanced geodetic and astronomical tasks including positioning and navigation on Earth and in space. Earth Rotation Parameters (ERP) are a subset of EOP, consisting of coordinates of the Earth’s pole (PMx, PMy) and UT1-UTC (or Length of Day - LOD). This paper presents the ultra-short-term (up to 15 days into the future) and short-term (up to 30 days into the future) ERP prediction using geostatistical method of ordinary kriging and autoregressive integrated moving average (ARIMA) model. This contribution uses rapid GNSS products EOP 14 12h from IGS, CODE and GFZ and also IERS final products - IERS EOP 14 C04 12h (IAU2000A). The results indicate that the accuracy of ARIMA prediction for each ERP is better for ultra-short prediction. The maximum differences between methods for first few days of 15-day predictions are around 0.32 mas (PMx), 0.23 mas (PMy) and 0.004 ms (LOD) in favour of ARIMA model. The maximum differences of Mean Absolute Prediction Errors (MAPEs) on the last few days of 30-day predictions are 1.91 mas (PMx), 0.30 mas (PMy) and 0.026 ms (LOD) with advantage to kriging method. For all ERPs the differences of MAPEs for time series from various analysis centres are not significant and vary up to maximum value of around 0.05 mas (PMx), 0.04 mas (PMy) and 0.005 ms (LOD).
Źródło:
Artificial Satellites. Journal of Planetary Geodesy; 2022, 57, Special Issue 1; 275--289
2083-6104
Pojawia się w:
Artificial Satellites. Journal of Planetary Geodesy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessing the representative elementary volume of rock types by X-ray computed tomography (CT) – a simple approach to demonstrate the heterogeneity of the Boda Claystone Formation in Hungary
Autorzy:
Abutaha, Saja M.
Geiger, János
Gulyás, Sándor
Fedor, Ferenc
Powiązania:
https://bibliotekanauki.pl/articles/2204358.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Tematy:
Hounsfield Unit
HU
autoregressive integrated moving average
ARIMA
Statistical Process Control
SPC technique
skala Hounsfielda
model ARIMA
statystyczna kontrola procesu
SPC
Opis:
X-ray computed tomography (CT) can reveal internal, three-dimensional details of objects in a non-destructive way and provide high-resolution, quantitative data in the form of CT numbers. The sensitivity of the CT number to changes in material density means that it may be used to identify lithology changes within cores of sedimentary rocks. The present pilot study confirms the use of Representative Elementary Volume (REV) to quantify inhomogeneity of CT densities of rock constituents of the Boda Claystone Formation. Thirty-two layers, 2 m core length, of this formation were studied. Based on the dominant rock-forming constituent, two rock types could be defined, i.e., clayey siltstone (20 layers) and fine siltstone (12 layers). Eleven of these layers (clayey siltstone and fine siltstone) showed sedimentary features such as, convolute laminations, desiccation cracks, cross-laminations and cracks. The application of the Autoregressive Integrated Moving Averages, Statistical Process Control (ARIMA SPC) method to define Representative Elementary Volume (REV) of CT densities (Hounsfield unit values) affirmed the following results: i) the highest REV values corresponded to the presence of sedimentary structures or high ratios of siltstone constituents (> 60%). ii) the REV average of the clayey siltstone was (5.86 cm3) and (6.54 cm3) of the fine siltstone. iii) normalised REV percentages of the clayey siltstone and fine siltstone, on the scale of the core volume studied were 19.88% and 22.84%; respectively. iv) whenever the corresponding layer did not reveal any sedimentary structure, the normalised REV values would be below 10%. The internal void space in layers with sedimentary features might explain the marked textural heterogeneity and elevated REV values. The drying process of the core sample might also have played a significant role in increasing erroneous pore proportions by volume reducation of clay minerals, particularly within sedimentary structures, where authigenic clay and carbonate cement were presumed to be dominant.
Źródło:
Geologos; 2021, 27, 3; 157--172
1426-8981
2080-6574
Pojawia się w:
Geologos
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Best Time Series In-sample Model for Forecasting Nigeria Exchange Rate
Autorzy:
Gaddafi, Adamu Babali
Akpensuen, Shiaondo Henry
Shitu, Abdulrazaq Ahmed
Malle, Ahmad Atiku
Adamu, Muhammed
Bukar, Muhammad Goni
Powiązania:
https://bibliotekanauki.pl/articles/1031300.pdf
Data publikacji:
2021
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
ARIMA
Autoregressive Integrated Moving Average Model
Autoregressive Moving Average Model
Autoregressive models
Box-Jenkins Methodology
CBN
Exchange rate
Model
Moving Average Models
Nigeria
Opis:
In this work we considered data on official Nigeria exchange rates (Naira to British Pound sterling) from January 2003 to December 2019. Four competing models ARIMA (1, 1, 1), ARIMA (2, 1, 1), ARIMA (1, 1, 0) and ARIMA (1, 1, 2) were identified for the exchange rates series. Diagnostic analysis revealed that all the competing models adequately represent the exchange rate series. However, on the basis of out-of-sample model selection and evaluation ARIMA (1, 1, 1) was selected as the optimal model with minimum information criteria for the exchange rate series. A 24 months forecast indicates that the Naira will continue to depreciate. The policy implication of our study is that the Central Bank of Nigeria (CBN), should devalue the Naira in order to not only re-establish exchange rate stability but also encourage local manufacturing and encourage foreign capital inflows.
Źródło:
World Scientific News; 2021, 151; 45-63
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling and Forecasting of Monthly Global Price of Bananas Using Seasonal Arima And Multilayer Perceptron Neural Network
Modelowanie i prognozowanie miesięcznej globalnej ceny bananów z wykorzystaniem sezonowej ARIMA i wielowarstwowej sieci neuronowej perceptronowej
Autorzy:
Chi, Yeong Nain
Chi, Orson
Powiązania:
https://bibliotekanauki.pl/articles/1748958.pdf
Data publikacji:
2021
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
bananas
global price
time series
modeling
forecasting
seasonal ARIMA
multilayer perceptron neural network
banany
cena globalna
szeregi czasowe
modelowanie
prognozowanie
sezonowy model ARIMA
wielowarstwowa sieć neuronowa perceptronowa
Opis:
The primary purpose of this study was to pursue the analysis of the time series data and to demonstrate the role of time series model in the predicting process using long-term records of the monthly global price of bananas from January 1990 to November 2020. Following the Box-Jenkins methodology, ARIMA(4,1,2)(1,0,1)[12] with the drift model was selected to be the best fit model for the time series, according to the lowest AIC value in this study. Empirically, the results revealed that the MLP neural network model performed better compared to ARIMA(4,1,2)(1,0,1)[12] with the drift model at its smaller MSE value. Hence, the MLP neural network model can provide useful information important in the decision-making process related to the impact of the change of the future global price of bananas. Understanding the past global price of bananas is important for the analyses of current and future changes of global price of bananas. In order to sustain these observations, research programs utilizing the resulting data should be able to improve significantly our understanding and narrow projections of the future global price of bananas.
Podstawowym celem tego badania była analiza danych szeregów czasowych oraz wskazanie ważności modelu szeregów czasowych w procesie predykcji z wykorzystaniem długoterminowych zapisów miesięcznej ceny bananów na świecie od stycznia 1990 r. do listopada 2020 r. Zgodnie z metodologią Boxa-Jenkinsa wybrano jako najlepiej dopasowany dla szeregu czasowego model ARIMA(4,1,2)(1,0,1)[12] z dryfem, zgodnie z najniższą wartością AIC. Na podstawie wyników empirycznych stwierdzono, że model sieci neuronowej MLP działał lepiej w porównaniu z modelem ARIMA(4,1,2)(1,0,1)[12] z dryfem z mniejszą wartością MSE. Wynika z tego, że model sieci neuronowej MLP może dostarczyć użytecznych informacji, które są ważne w procesie decyzyjnym dotyczącym wpływu zmian przyszłej globalnej ceny bananów. Postrzeganie przeszłych światowych cen bananów jest ważne dla analiz zarówno bieżących, jak i przyszłych zmian światowych cen. Aby podtrzymać te obserwacje, programy badawcze wykorzystujące uzyskane dane powinny umożliwiać znaczne poprawianie wnioskowania i zawężać prognozy przyszłych światowych cen bananów.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2021, 25, 3; 21-41
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of pork meat prices by selected methods as an element supporting the decision-making process
Autorzy:
Zielińska-Sitkiewicz, Monika
Chrzanowska, Mariola
Powiązania:
https://bibliotekanauki.pl/articles/2100136.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
agricultural sector
pork price
forecast
creeping trend
ARIMA model
Opis:
Forecasts of economic processes can be determined using various methods, and each of them has its own characteristics and is based on specific assumptions. In the case of agriculture, forecasting is an essential element of efficient management of the entire farming process. The pork sector is one of the main agricultural sectors in the world. Pork consumption and supply are the highest among all types of meat, and Poland belongs to the group of large producers. The article analyses the price formation of class E pork, expressed in € per 100 kg of carcass, recorded from May 2004 to December 2019. The data comes from the Agri-food data portal. A creeping trend model with segments of linear trends of various lengths and the methodology of building ARIMA models are used to forecast these prices. The accuracy of forecasts is verified by forecasting ex post and ex ante errors, graphical analysis, and backcasting analysis. The study shows that both methods can be used in the prediction of pork prices.
Źródło:
Operations Research and Decisions; 2021, 31, 3; 137--152
2081-8858
2391-6060
Pojawia się w:
Operations Research and Decisions
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza sezonowości sprzedaży nowych pojazdów w Polsce w latach 2013-2018
Analysis of the seasonality of new vehicle sales in Poland in 2013-2018
Autorzy:
Lewicki, Wojciech
Olejarz-Wahba, Aleksandra
Powiązania:
https://bibliotekanauki.pl/articles/2089667.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Gdański. Komisja Geografii Komunikacji Polskiego Towarzystwa Geograficznego
Tematy:
sprzedaż pojazdów
rynek motoryzacyjny
sezonowość sprzedaży
procedura TRAMO-SEATS
procedura ARIMA-X-12
vehicle sales
automotive market
sale seasonality
TRAMO-SEATS procedure
ARIMA-X-12 procedure
Opis:
Celem artykułu jest omówienie istoty występowania zjawiska sezonowości sprzedaży na polskim rynku motoryzacyjnym. Przedmiotem szczegółowych analiz był kierunek, poziom trendu, wartości odstające oraz rozkład wahań sezonowych w zakresie sprzedaży nowych pojazdów w Polsce w latach 2013-2018. Do dekompozycji szeregów czasowych zastosowano procedury ARIMA-X-12 oraz TRAMO-SEATS. W analizie wykorzystano dane miesięczne od stycznia 2013 r. do października 2018 r., pochodzące z Centralnej Ewidencji Pojazdów, publikowane w miesięcznych raportach Polskiego Związku Przemysłu Motoryzacyjnego. Dane wtórne dotyczyły sprzedaży nowych pojazdów osobowych (dla podmiotów gospodarczych oraz użytkowników indywidualnych), dostawczych, ciężarowych, autobusów, przyczep i naczep oraz motocykli i motorowerów. Z dostępnych raportów i badań wynika, że sprzedaż nowych pojazdów w Polsce wzrastała, z wyjątkiem sprzedaży motocykli i motorowerów. Autorzy wykazali, iż sprzedaż wszystkich pojazdów podlegała wahaniom sezonowym, które związane były z wyprzedażami roczników pojazdów, zamykaniem roku obrachunkowego w przypadku pojazdów użytkowych oraz porami roku (motocykle i motorowery). Autorzy stwierdzają, że wprowadzane zmiany dotyczące rejestracji nowych pojazdów, homologacji oraz norm dotyczących spalania były przyczyną powstawania tzw. szoków na rynku motoryzacyjnym.
The purpose of the article is to discuss the essence of the phenomenon of sales seasonality on the Polish automotive market. The subject of detailed analysis is an attempt to identify the direction, level of the trend, outliers and the distribution of seasonal fluctuations in the sale of new vehicles in Poland in 2013-2018. The ARIMA-X-12 and TRAMO-SEATS procedures were used to decompose time series. The analysis uses monthly data from January 2013 to October 2018, from the Central Register of Vehicles, published in monthly reports of the Polish Automotive Industry Association. Secondary data related to the sale of new passenger vehicles (for business entities and individual users), delivery vans, trucks, buses, trailers and semitrailers as well as motorcycles and mopeds. From the available reports and research shows that sales of new vehicles in Poland increased, with the exception of sales of motorcycles and mopeds. The authors showed that the sale of all vehicles was subject to seasonal fluctuations, which were associated with vehicle sales, closing the accounting year for commercial vehicles and seasons (motorcycles and mopeds. The authors state that the changes introduced regarding the registration of new vehicles, approvals and combustion standards were the cause of the so-called shocks on the automotive market.
Źródło:
Prace Komisji Geografii Komunikacji PTG; 2020, 23(1); 87-98
1426-5915
2543-859X
Pojawia się w:
Prace Komisji Geografii Komunikacji PTG
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
ARIMA-based forecasting of the dynamics of confirmed Covid-19 cases for selected European countries
Autorzy:
Kufel, Tadeusz
Powiązania:
https://bibliotekanauki.pl/articles/22444425.pdf
Data publikacji:
2020
Wydawca:
Instytut Badań Gospodarczych
Tematy:
Covid-19 epidemic
ARIMA model
forecasting
infection control
non-pharmaceutical intervention
Opis:
Research background: On 11 March 2020, the Covid-19 epidemic was identified by the World Health Organization (WHO) as a global pandemic. The rapid increase in the scale of the epidemic has led to the introduction of non-pharmaceutical countermeasures. Forecast of the Covid-19 prevalence is an essential element in the actions undertaken by authorities. Purpose of the article: The article aims to assess the usefulness of the Auto-regressive Integrated Moving Average (ARIMA) model for predicting the dynamics of Covid-19 incidence at different stages of the epidemic, from the first phase of growth, to the maximum daily incidence, until the phase of the epidemic's extinction. Methods: ARIMA(p,d,q) models are used to predict the dynamics of virus distribution in many diseases. Model estimates, forecasts, and the accuracy of forecasts are presented in this paper. Findings & Value added: Using the ARIMA(1,2,0) model for forecasting the dynamics of Covid-19 cases in each stage of the epidemic is a way of evaluating the implemented non-pharmaceutical countermeasures on the dynamics of the epidemic.
Źródło:
Equilibrium. Quarterly Journal of Economics and Economic Policy; 2020, 15, 2; 181-204
1689-765X
2353-3293
Pojawia się w:
Equilibrium. Quarterly Journal of Economics and Economic Policy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Energy efficiency profiles in developing the free-carbon economy: on the example of Ukraine and the V4 countries
Profile efektywności energetycznej w rozwoju gospodarki bezemisyjnej na przykładzie Ukrainy i krajów V4
Autorzy:
Us, Yana
Pimonenko, Tetyana
Lyulyov, Oleksii
Powiązania:
https://bibliotekanauki.pl/articles/1840768.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
ARIMA
energy-efficiency
EU Green Deal
green economic transition
efektywność energetyczna
zielony ład UE
zielona transformacja gospodarcza
Opis:
This paper summarizes the arguments and counterarguments within the scientific discussion on developing the free-carbon economy in Ukraine. The main purpose of the paper is elaborating the energy efficiency profile of Ukraine to assure the development of the free-carbon economy. To achieve this purpose, the authors carried out an investigation in the following logical sequence. Firstly, the bibliometric analysis of 4674 of the most cited articles indexed by the Scopus database was conducted. The obtained findings indicated that the green economy transformation depended on the main factors such as economic performance, corruption, macroeconomic stability, social welfare, shadow economy etc. As a result, the forecast of the final energy consumption to 2030 was performed. The methodological tool of this research is based on the Autoregressive Integrated Moving Average (ARIMA) model. This study involved data of the Visegrad countries (Poland, the Czech Republic, the Slovak Republic and Hungary) and Ukraine from 2000 to 2018. The base of data is Eurostat, the EU statistical service. Based on the obtained results of analyzing the green economic transformation in the Visegrad countries and Ukraine, the authors intimated the existence of the significant energy-efficient gap in Ukraine compared to the analyzed countries. In reliance on the experience of the Visegrad countries and the forecast results, the authors provided the main recommendations for providing the green transforming in Ukraine. The authors highlighted that the obtained results of this paper were considered to be the base for future investigations considering the influence of endogenous and exogenous factors on developing the free-carbon economy in Ukraine.
W artykule podsumowano argumenty i kontrargumenty w ramach dyskusji naukowej na temat rozwoju gospodarki wolnej od węgla na Ukrainie. Głównym celem artykułu jest opracowanie profilu efektywności energetycznej Ukrainy w celu zapewnienia rozwoju gospodarki niskoemisyjnej. Aby osiągnąć ten cel, autorzy przeprowadzili badanie w następującej logicznej kolejności. Po pierwsze, przeprowadzono analizę bibliometryczną 4674 najczęściej cytowanych artykułów zindeksowanych w bazie Scopus. Uzyskane wyniki wskazywały, że transformacja w kierunku zielonej gospodarki zależy głównie od takich czynników jak wyniki gospodarcze, korupcja, stabilność makroekonomiczna, dobrobyt społeczny, szara strefa itp. Następnie wykonano prognozę zużycia energii końcowej do 2030 roku. Narzędziem metodologicznym tego badania jest model autoregresywnej zintegrowanej średniej ruchomej (ARIMA). W badaniu uwzględniono dane z krajów Grupy Wyszehradzkiej (Polska, Czechy, Słowacja i Węgry) oraz Ukrainy w latach 2000–2018, których źródłem była baza Eurostat. Na podstawie uzyskanych wyników analizy przemian gospodarczych w krajach wyszehradzkich i na Ukrainie autorzy stwierdzili, że na Ukrainie istnieje znaczna luka w efektywności energetycznej w porównaniu z analizowanymi krajami. Opierając się na doświadczeniach krajów wyszehradzkich i prognozowanych wynikach, autorzy przedstawili najważniejsze rekomendacje dotyczące zapewnienia zielonej transformacji na Ukrainie. Autorzy podkreślili, że uzyskane wyniki przedstawione w niniejszym artykule można uznać za podstawę do dalszych badań nad wpływem czynników endogenicznych i egzogenicznych na rozwój gospodarki wolnej od węgla na Ukrainie.
Źródło:
Polityka Energetyczna; 2020, 23, 4; 49-66
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Joint effect of forecasting and lot-sizing method on cost minimization objective of a manufacturer: a case study
Autorzy:
Olesen, Jack
Pedersen, Carl-Emil Houmøller
Knudsen, Markus Germann
Toft, Sandra
Nedbailo, Vladimir
Prisak, Johan
Nielsen, Izabela Ewa
Saha, Subrata
Powiązania:
https://bibliotekanauki.pl/articles/1837777.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
forecasting
ARIMA
inventory management
lot-sizing
economies of scale
production planning
heuristic
prognozowanie
zarządzanie zapasami
wielkość partii
ekonomia skali
planowanie produkcji
heurystyka
Opis:
Forecasting and lot-sizing problems are key for a variety of products manufactured in a plant of finite capacity. The plant manager needs to put special emphasis on the way of selecting the right forecasting methods with a higher level of accuracy and to conduct procurement planning based on specific lot-sizing methods and associated rolling horizon. The study is con-ducted using real case data form the Fibertex Personal Care, and has evalu-ated the joint influence of forecasting procedures such as ARIMA, exponen-tial smoothing methods; and deterministic lot-sizing methods such as the Wagner-Whitin method, modified Silver-Meal heuristic to draw insights on the effect of the appropriate method selection on minimization of operational cost. The objective is to explore their joint effect on the cost minimization goal. It is found that a proficient selection process has a considerable impact on performance. The proposed method can help a manager to save substantial operational costs.
Źródło:
Applied Computer Science; 2020, 16, 4; 21-36
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metodyka wielokryterialnej analizy zmian stóp bezrobocia wybranych gospodarek światowych oraz prognozowanie modelem ARIMA stopy bezrobocia USA na przyszłość
Methodology of Multi-criteria Analysis of Changes in Unemployment Rates in Selected World Economies and Forecasting with the ARIMA Model of the US Unemployment Rate for the Future
Autorzy:
Kozicki, Bartosz
Žukovskis, Jan
Mizura, Grzegorz
Powiązania:
https://bibliotekanauki.pl/articles/23945046.pdf
Data publikacji:
2020-03-23
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
bezrobocie
prognozowanie
model ARIMA
unemployment
forecasting
ARIMA model
Opis:
W artykule przedstawiono metodykę wielokryterialnej analizy stóp procentowych bezrobocia w wybranych gospodarkach światowych oraz próby przeprowadzenia prognozowania stopy bezrobocia w USA na trzy przyszłe okresy. Badania rozpoczęto od analizy wielowymiarowej zmienności stóp procentowych bezrobocia w wybranych gospodarkach światowych w ujęciu sześciomiesięcznym w latach 2011-2018. Następnie przeprowadzono jej ocenę. Dalszym etapem badania była analiza i ocena szeregu czasowego danych dotyczących stóp procentowych bezrobocia w USA w ujęciu dynamicznym. Następnie zbudowano model prognostyczny ARIMA i wykonano prognozowanie na trzy przyszłe okresy.
The article presents the methodology of multi-criteria analysis of unemployment interest rates in selected world economies, and an attempt to forecast the unemployment rate in the USA for three future periods. The research began with an analysis of the multidimensional volatility of unemployment interest rates in selected world economies on a six-month basis in 2011-2018. It was then assessed. The next stage of the study was the analysis and evaluation of the time series of data on the US unemployment interest rates in dynamic terms. Then, the ARIMA forecast model was built and forecasting for three future periods was performed.
Źródło:
Nowoczesne Systemy Zarządzania; 2020, 15, 1; 71-85
1896-9380
2719-860X
Pojawia się w:
Nowoczesne Systemy Zarządzania
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling of covid-19 cases of selected states in Nigeria using linear and non-linear prediction models
Modelowanie przypadków COVID-19 w wybranych stanach Nigerii przy użyciu liniowych i nieliniowych modeli predykcyjnych
Autorzy:
Olarenwaju, Babatunde Abdulrauph
Harrison, Igboeli Uchenna
Powiązania:
https://bibliotekanauki.pl/articles/1427823.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
ARIMA
ANN
prediction
pandemic
prognoza
pandemia
Opis:
COVID-19 has stamped an indelible mark in the history of humanity as one of the recorded deadly virus that has wiped out millions of lives on planet earth many whose exact cause of death cannot be account for due to lack of knowledge. It has become a household name in every nook and cranny from developed to the underdeveloped nations of the world. Most of the prominent signs of COVID-19 like fever, cough, difficulty in breathing and accessional muscle pain can also resemble those of many other notable diseases thereby making it highly necessary to undergo a diagnostic test to be able to categorically identify COVID-19 patients. The use of medical diagnostic tests can also help determine patients who have recovered from COVID-19. Various studies abound with researchers trying to predict and even forecast the level of damage and disruption of economic activities this may have brought to almost every nation of the world. This research attempts to find out the nature of the spread of the virus using Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN). The essence is to ascertain the exact model to use in forecasting the future occurrence of the pandemic especially at this stage where the second wave of the pandemic is in view. The study found that both linear and nonlinear predictions models can fit the trend of the virus in Nigeria with ARIMA producing results of over 97% on a 120-day period while ANN produced results of about 98.01% in some states. We conclude that future waves of the virus in addition to other epidemics of this nature can be predicted with high degree of accuracy with ARIMA or ANN.
Źródło:
Journal of Computer Sciences Institute; 2020, 17; 390-395
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies