Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "anomaly detection" wg kryterium: Temat


Tytuł:
Database security : combining neural networks and classification approach
Autorzy:
Skaruz, Jarosław
Powiązania:
https://bibliotekanauki.pl/articles/1819254.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
database
security
anomaly detection
neural networks
Opis:
In the paper we present a new approach based on application of neural networks to detect SQL attacks. SQL attacks are those attacks that take the advantage of using SQL statements to be performed. The problem of detection of this class of attacks is transformed to time series prediction problem. SQL queries are used as a source of events in a protected environment. To differentiate between normal SQL queries and those sent by an attacker, we divide SQL statements into tokens and pass them to our detection system, which predicts the next token, taking into account previously seen tokens. In the learning phase tokens are passed to a recurrent neural network (RNN) trained by backpropagation through time (BPTT) algorithm. Then, two coefficients of the rule are evaluated. The rule is used to interpret RNN output. In the testing phase RNN with the rule is examined against attacks and legal data to find out how evaluated rule affects efficiency of detecting attacks. All experiments were conducted on Jordan network. Experimental results show the relationship between the rule and a length of SQL queries.
Źródło:
Studia Informatica : systems and information technology; 2019, 1-2(23); 95--115
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Incoherent Dictionary Learning for Sparse Representation in Network Anomaly Detection
Autorzy:
Andrysiak, Tomasz
Saganowski, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/1373708.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Jagielloński. Wydawnictwo Uniwersytetu Jagiellońskiego
Tematy:
dictionary learning
sparse representation
anomaly detection
Opis:
In this article we present the use of sparse representation of a signal and incoherent dictionary learning method for the purpose of network traffic analysis. In learning process we use 1D INK-SVD algorithm to detect proper dictionary structure. Anomaly detection is realized by parameter estimation of the analyzed signal and its comparative analysis to network traffic profiles. Efficiency of our method is examined with the use of extended set of test traces from real network traffic. Received experimental results confirm effectiveness of the presented method.
Źródło:
Schedae Informaticae; 2015, 24; 63-71
0860-0295
2083-8476
Pojawia się w:
Schedae Informaticae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detecting anomalies in advertising web traffic with the use of the variational autoencoder
Autorzy:
Gabryel, Marcin
Lada, Dawid
Filutowicz, Zbigniew
Patora-Wysocka, Zofia
Kisiel-Dorohinicki, Marek
Chen, Guang Yi
Powiązania:
https://bibliotekanauki.pl/articles/2147149.pdf
Data publikacji:
2022
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
anomaly detection
web traffic
ad fraud
variational autoencoder
Opis:
This paper presents a neural network model for identifying non-human traffic to a website, which is significantly different from visits made by regular users. Such visits are undesirable from the point of view of the website owner as they are not human activity, and therefore do not bring any value, and, what is more, most often involve costs incurred in connection with the handling of advertising. They are made most often by dishonest publishers using special software (bots) to generate profits. Bots are also used in scraping, which is automatic scanning and downloading of website content, which actually is not in the interest of website authors. The model proposed in this work is learnt by data extracted directly from the web browser during website visits. This data is acquired by using a specially prepared JavaScript that monitors the behavior of the user or bot. The appearance of a bot on a website generates parameter values that are significantly different from those collected during typical visits made by human website users. It is not possible to learn more about the software controlling the bots and to know all the data generated by them. Therefore, this paper proposes a variational autoencoder (VAE) neural network model with modifications to detect the occurrence of abnormal parameter values that deviate from data obtained from human users’ Internet traffic. The algorithm works on the basis of a popular autoencoder method for detecting anomalies, however, a number of original improvements have been implemented. In the study we used authentic data extracted from several large online stores.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 4; 255--266
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Anomaly Detection Framework Based on Matching Pursuit for Network Security Enhancement
Autorzy:
Renk, R.
Hołubowicz, W.
Powiązania:
https://bibliotekanauki.pl/articles/309519.pdf
Data publikacji:
2011
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
anomaly detection
intrusion detection
matching pursuit
network security
signal processing
Opis:
In this paper, a framework for recognizing network traffic in order to detect anomalies is proposed. We propose to combine and correlate parameters from different layers in order to detect 0-day attacks and reduce false positives. Moreover, we propose to combine statistical and signal-based features. The major contribution of this paper are: novel framework for network security based on the correlation approach as well as new signal based algorithm for intrusion detection using matching pursuit.
Źródło:
Journal of Telecommunications and Information Technology; 2011, 1; 32-36
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of the Complex Event Processing system for anomaly detection and network monitoring
Autorzy:
Frankowski, G.
Jerzak, M.
Miłostan, M.
Nowak, T.
Pawłowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/305323.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
network monitoring
intrusion detection
anomaly detection
complex event processing
Opis:
Protection of infrastructures for e-science, including grid environments and NREN facilities, requires the use of novel techniques for anomaly detection and network monitoring. The aim is to raise situational awareness and provide early warning capabilities. The main operational problem that most network operators face is integrating and processing data from multiple sensors and systems placed at critical points of the infrastructure. From a scientific point of view, there is a need for the efficient analysis of large data volumes and automatic reasoning while minimizing detection errors. In this article, we describe two approaches to Complex Event Processing used for network monitoring and anomaly detection and introduce the ongoing SECOR project (Sensor Data Correlation Engine for Attack Detection and Support of Decision Process), supported by examples and test results. The aim is to develop methodology that allows for the construction of next-generation IDS systems with artificial intelligence, capable of performing signature-less intrusion detection.
Źródło:
Computer Science; 2015, 16 (4); 351-371
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Representativeness analysis and possible applications of partial network data flows
Autorzy:
Bolanowski, M.
Paszkiewicz, A.
Wroński, M.
Żegleń, R.
Powiązania:
https://bibliotekanauki.pl/articles/114308.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
link aggregation control protocol
network security
network anomaly detection
Opis:
A new approach to statistical analysis of network flows and its possible application to statistical anomaly detection in high bandwidth communication networks are presented in the paper. The whole data stream was divided into smaller flows using Link Aggregation Control Protocol (LACP). A statistical analysis of the resulting flows shows that a single stream separated from the overall network traffic is representative when it comes to statistical anomaly detection. Such an approach allows the reduction of hardware resources needed to detect anomalies, and makes such a detection possible in high traffic communication systems.
Źródło:
Measurement Automation Monitoring; 2016, 62, 1; 29-32
2450-2855
Pojawia się w:
Measurement Automation Monitoring
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Architecture of maritime awareness system supplied with external information
Autorzy:
Stróżyna, M.
Małyszko, J.
Węcel, K.
Filipiak, D.
Abramowicz, W.
Powiązania:
https://bibliotekanauki.pl/articles/320420.pdf
Data publikacji:
2016
Wydawca:
Polskie Forum Nawigacyjne
Tematy:
maritime awareness
AIS
data fusion
information extraction
anomaly detection
Opis:
In this paper, we discuss a software architecture, which has been developed for the needs of the System for Intelligent Maritime Monitoring (SIMMO). The system bases on the state-of-the-art information fusion and intelligence analysis techniques, which generates an enhanced Recognized Maritime Picture and thus supports situation analysis and decision-making. The SIMMO system aims to automatically fuse an up-to-date maritime data from Automatic Identification System (AIS) and open Internet sources. Based on collected data, data analysis is performed to detect suspicious vessels. Functionality of the system is realized in a number of different modules (web crawlers, data fusion, anomaly detection, visualization modules) that share the AIS and external data stored in the system’s database. The aim of this article is to demonstrate how external information can be leveraged in maritime awareness system and what software solutions are necessary. A working system is presented as a proof of concept.
Prezentowany artykuł omawia architekturę oprogramowania opracowanego na potrzeby projektu System for Intelligent Maritime Monitoring (SIMMO). System ten bazuje na najnowszych osiągnięciach w dziedzinach fuzji oraz inteligentnej analizy danych w celu generowania wzbogaconego obrazu sytuacji na morzu i wspomagania decyzji. SIMMO w sposób automatyczny łączy dane dotyczące ruchu morskiego z systemu AIS z danymi pochodzącymi z otwartych źródeł internetowych. Dzięki zebranym danym możliwa jest analiza w celu wykrycia podejrzanych zachowań na morzu. Funkcjonalność systemu stanowi wypadkową zawartych w nim modułów (ekstrakcja danych, fuzja danych, detekcja anomalii, wizualizacja) współdzielących dostęp do baz z danymi AIS oraz z zewnętrznych źródeł. Celem artykułu jest demonstracja sposobu wykorzystywania zewnętrznych informacji w systemach przeznaczonych do monitorowania ruchu morskiego, a także prezentacja działającego systemu.
Źródło:
Annual of Navigation; 2016, 23; 135-149
1640-8632
Pojawia się w:
Annual of Navigation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Crowdsourced Driving Comfort Monitoring
Autorzy:
Badurowicz, Marcin
Montusiewicz, Jerzy
Przyłucki, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2023307.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
accelerometer
anomaly detection
roads quality
road artefacts
quality monitoring
Opis:
In this paper, the authors are showing a calculation of the road quality index called Simple Road Quality Index (SRQI) using the weight provided by the amateur drivers to best possibly rate their comfort on driving on that road. The index is calculated from acceleration data acquired by the smartphone application and is aggregated in a crowdsourcing system for the classification of road quality using the fuzzy membership function. The paper shows that the proposed index correctly shows road quality changes over time and may be used as a way to mark roads to be avoided or needs to be repaired. The numerical experiment was based on the same street in Lublin, Poland, in 2015-2021 and is correctly showing that the quality of analyzed roads deteriorated over time, especially in the winter season.
Źródło:
Advances in Science and Technology. Research Journal; 2021, 15, 3; 309-317
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
VoIP Anomaly Detection - selected methods of statistical analysis
Autorzy:
Dymora, P.
Mazurek, M.
Jaskółka, S.
Powiązania:
https://bibliotekanauki.pl/articles/106150.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Hurst factor
anomaly detection
self-similarity
long-range dependence
Opis:
Self-similarity analysis and anomaly detection in networks are interesting fields of research and scientific work of scientists around the world. Simulation studies have demonstrated that the Hurst parameter estimation can be used to detect traffic anomaly. The actual network traffic is self-similar or long-range dependent. The dramatic expansion of applications on modern networks gives rise to a fundamental challenge to network security. The Hurst values are compared with confidence intervals of normal values to detect anomaly in VoIP.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica; 2016, 16, 2; 14-19
1732-1360
2083-3628
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Double Layered Priority based Gray Wolf Algorithm (PrGWO-SK) for safety management in IoT network through anomaly detection
Autorzy:
Agrawal, Akhileshwar Prasad
Singh, Nanhay
Powiązania:
https://bibliotekanauki.pl/articles/2200943.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
Gray Wolf Optimizer
anomaly detection
feature selection
predictive maintenance
Opis:
For mitigating and managing risk failures due to Internet of Things (IoT) attacks, many Machine Learning (ML) and Deep Learning (DL) solutions have been used to detect attacks but mostly suffer from the problem of high dimensionality. The problem is even more acute for resource starved IoT nodes to work with high dimension data. Motivated by this problem, in the present work a priority based Gray Wolf Optimizer is proposed for effectively reducing the input feature vector of the dataset. At each iteration all the wolves leverage the relative importance of their leader wolves’ position vector for updating their own positions. Also, a new inclusive fitness function is hereby proposed which incorporates all the important quality metrics along with the accuracy measure. In a first, SVM is used to initialize the proposed PrGWO population and kNN is used as the fitness wrapper technique. The proposed approach is tested on NSL-KDD, DS2OS and BoTIoT datasets and the best accuracies are found to be 99.60%, 99.71% and 99.97% with number of features as 12,6 and 9 respectively which are better than most of the existing algorithms.
Źródło:
Eksploatacja i Niezawodność; 2022, 24, 4; 641--654
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Method of machining centre sliding system fault detection using torque signals and autoencoder
Autorzy:
Augustyn, Damian
Fidali, Marek
Powiązania:
https://bibliotekanauki.pl/articles/2233649.pdf
Data publikacji:
2023
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
condition monitoring
torque signal
machining centre
anomaly detection
autoencoder
Opis:
The sliding system of machining centres often causes maintenance and process problems. Improper operation of the sliding system can result from wear of mechanical parts and drives faults. To detect the faulty operation of the sliding system, measurements of the torque of its servomotors can be used. Servomotor controllers can measure motor current, which can be used to calculate motor torque. For research purposes, the authors used a set of torque signals from the machining centre servomotors that were acquired over a long period. The signals were collected during a diagnostic test programmed in the machining centre controller and performed once per day. In this article, a method for detecting anomalies in torque signals was presented for the condition assessment of the machining centre sliding systems. During the research, an autoencoder was used to detect the anomaly, and the condition was assessed based on the value of the reconstruction error. The results indicate that the anomaly detection method using an autoencoder is an effective solution for detecting damage to the sliding system and can be easily used in a condition monitoring system.
Źródło:
Acta Mechanica et Automatica; 2023, 17, 3; 445--451
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Offline-online pattern recognition for enabling time series anomaly detection on older NC machine tools
Autorzy:
Netzer, Markus
Palenga, Yannic
Goennheimer, Philipp
Fleischer, Juergen
Powiązania:
https://bibliotekanauki.pl/articles/1428705.pdf
Data publikacji:
2021
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
data provision
anomaly detection
machine learning
manufacturing
condition monitoring
Opis:
Intelligent IoT functions for increased availability, productivity and component quality offer significant added value to the industry. Unfortunately, many old machines and systems are characterized by insufficient, inconsistent IoT connectivity and heterogeneous parameter naming. Furthermore, the data is only available in unstructured form. In the following, a new approach for standardizing information models from existing plants with machine learning methods is described and an offline-online pattern recognition system for enabling anomaly detection under varying machine conditions is introduced. The system can enable the local calculation of signal thresholds that allow more granular anomaly detection than using only single indexing and aims to improve the detection of anomalous machine behaviour especially in finish machining.
Źródło:
Journal of Machine Engineering; 2021, 21, 1; 98-108
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
ADDP : Anomaly Detection Based on Denoising Pretraining
Autorzy:
Ge, Xianlei
Li, Xiaoyan
Zhang, Zhipeng
Powiązania:
https://bibliotekanauki.pl/articles/27311945.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
Anomaly Detection
Diffusion Models
image denoising
Pretraining
transfer learning
Opis:
Acquiring labels in anomaly detection tasks is expensive and challenging. Therefore, as an effective way to improve efficiency, pretraining is widely used in anomaly detection models, which enriches the model's representation capabilities, thereby enhancing both performance and efficiency in anomaly detection. In most pretraining methods, the decoder is typically randomly initialized. Drawing inspiration from the diffusion model, this paper proposed to use denoising as a task to pretrain the decoder in anomaly detection, which is trained to reconstruct the original noise-free input. Denoising requires the model to learn the structure, patterns, and related features of the data, particularly when training samples are limited. This paper explored two approaches on anomaly detection: simultaneous denoising pretraining for encoder and decoder, denoising pretraining for only decoder. Experimental results demonstrate the effectiveness of this method on improving model’s performance. Particularly, when the number of samples is limited, the improvement is more pronounced.
Źródło:
International Journal of Electronics and Telecommunications; 2023, 69, 4; 719--726
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Feature Engineering for Anti-Fraud Models Based on Anomaly Detection
Autorzy:
Przekop, Damian
Powiązania:
https://bibliotekanauki.pl/articles/2075464.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fraud detection
application fraud
feature engineering
anomaly detection
risk modeling
Opis:
The paper presents two algorithms as a solution to the problem of identifying fraud intentions of a customer. Their purpose is to generate variables that contribute to fraud models’ predictive power improvement. In this article, a novel approach to the feature engineering, based on anomaly detection, is presented. As the choice of statistical model used in the research improves predictive capabilities of a solution to some extent, most of the attention should be paid to the choice of proper predictors. The main finding of the research is that model enrichment with additional predictors leads to the further improvement of predictive power and better interpretability of anti-fraud model. The paper is a contribution to the fraud prediction problem but the method presented may generate variable input to every tool equipped with variable- selection algorithm. The cost is the increased complexity of the models obtained. The approach is illustrated on a dataset from one of the European banks.
Źródło:
Central European Journal of Economic Modelling and Econometrics; 2020, 3; 301-316
2080-0886
2080-119X
Pojawia się w:
Central European Journal of Economic Modelling and Econometrics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Anomaly detection in server metrics with use of one-sided median algorithm
Autorzy:
Zacher, S.
Ryba, P.
Powiązania:
https://bibliotekanauki.pl/articles/972918.pdf
Data publikacji:
2017
Wydawca:
Społeczna Akademia Nauk w Łodzi
Tematy:
anomaly detection
time series
one-sided median
server metrics
Opis:
In this paper we consider the problem of anomaly detection over time series metrics data took from one of corporate grade mail service cluster. We propose the algorithm based on one-sided median concept and present some results of experiments showing impact of parameters settings on algorithm performance. In addition we present short description of classes of anomalies discovered in monitored system. Proposed one-sided median based algorithm shows great robustness and good detection rate and can be considered as possible simple production ready solution.
Źródło:
Journal of Applied Computer Science Methods; 2017, 9 No. 1; 5-22
1689-9636
Pojawia się w:
Journal of Applied Computer Science Methods
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies