Acquiring labels in anomaly detection tasks is expensive and challenging. Therefore, as an effective way to improve efficiency, pretraining is widely used in anomaly detection models, which enriches the model's representation capabilities, thereby enhancing both performance and efficiency in anomaly detection. In most pretraining methods, the decoder is typically randomly initialized. Drawing inspiration from the diffusion model, this paper proposed to use denoising as a task to pretrain the decoder in anomaly detection, which is trained to reconstruct the original noise-free input. Denoising requires the model to learn the structure, patterns, and related features of the data, particularly when training samples are limited. This paper explored two approaches on anomaly detection: simultaneous denoising pretraining for encoder and decoder, denoising pretraining for only decoder. Experimental results demonstrate the effectiveness of this method on improving model’s performance. Particularly, when the number of samples is limited, the improvement is more pronounced.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00