Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "alfabet migowy" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Impact of Image Preprocessing on Recognition of Letters of Sign Language
Wpływ przetwarzania wstępnego obrazów na rozpoznawanie znaków alfabetu migowego
Autorzy:
Abramowicz, P.
Topczewska, M.
Powiązania:
https://bibliotekanauki.pl/articles/88414.pdf
Data publikacji:
2018
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
przetwarzanie wstępne
alfabet migowy
klasyfikacja
image preprocessing
sign language
classification
Opis:
The article concerns the problem of the selected sign language letters in the form of images classification. The impact of the image preprocessing methods as adaptive thresholding or edge detection is tested. In addition, the influence of the found shapes filling is checked, as well as centering the hands on the images. The following classification methods were chosen: SVM classifier with linear kernel function, Naive Bayes and Random Forests. The accuracy, F-measure, the AUC, MAE and Kappa coefficient were reported as measures of classification quality.
Artykuł dotyczy klasyfikacji wybranych liter alfabetu migowego w postaci obrazów. Badany jest wpływ na wyniki kilku metod przetwarzania wstępnego obrazów, w tym progowania adaptacyjnego oraz detekcji krawędzi. Dodatkowo sprawdzane jest wypełnianie znalezionych kształtów, a także centrowanie dłoni na obrazach. Jako metody klasyfikacji wybrane zostały: klasyfikator SVM z liniową funkcją jądrową, klasyfikator Naive Bayes oraz Random Forest. Jako miary jakości klasyfikacji raportowane są jakość klasyfikacji, miara F, pole pod krzywą ROC oraz współczynnik Kappa.
Źródło:
Advances in Computer Science Research; 2018, 14; 5-16
2300-715X
Pojawia się w:
Advances in Computer Science Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Сross platform tools for modeling and recognition of the fingerspelling alphabet of gesture language
Сross-platformowe narzędzia do modelowania i rozpoznawania alfabetu palcowego języka gestów
Autorzy:
Kondratiuk, Serhii S.
Krak, Iurii V.
Wójcik, Waldemar
Powiązania:
https://bibliotekanauki.pl/articles/408302.pdf
Data publikacji:
2019
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
cross-platform
sign language
fingerspelling alphabet
3D modeling
Convolutional Neural Networks
język migowy
alfabet palcowy
modelowanie 3D
konwolucyjna sieć neuronowa
Opis:
A solution for the problems of the finger spelling alphabet of gesture language modelling and recognition based on cross-platform technologies is proposed. Modelling and recognition performance can be flexible and adjusted, based on the hardware it operates or based on the availability of an internet connection. The proposed approach tunes the complexity of the 3D hand model based on the CPU type, amount of available memory and internet connection speed. Sign recognition is also performed using cross-platform technologies and the tradeoff in model size and performance can be adjusted. the methods of convolutional neural networks are used as tools for gestures of alphabet recognition. For the gesture recognition experiment, a dataset of 50,000 images was collected, with 50 different hands recorded, with almost 1,000 images per each person. The experimental researches demonstrated the effectiveness of proposed approaches.
Zaproponowano rozwiązanie problemów z alfabetem daktylograficznym w modelowaniu języka gestów i rozpoznawaniu znaków w oparciu o technologie wieloplatformowe. Wydajność modelowania i rozpoznawania może być elastyczna i dostosowana, w zależności od wykorzystywanego sprzętu lub dostępności łącza internetowego. Proponowane podejście dostosowuje złożoność modelu 3D dłoni w zależności od typu procesora, ilości dostępnej pamięci i szybkości połączenia internetowego. Rozpoznawanie znaków odbywa się również z wykorzystaniem technologii międzyplatformowych, a kompromis w zakresie wielkości modelu i wydajności może być dostosowany. Jako narzędzia do rozpoznawania gestów alfabetu wykorzystywane są metody konwolucyjnych sieci neuronowych. Na potrzeby eksperymentu rozpoznawania gestów zebrano zbiór danych obejmujący 50 000 obrazów, przy czym zarejestrowano 50 różnych rąk, a na każdą osobę przypadało prawie 1000 obrazów. Badania eksperymentalne wykazały skuteczność proponowanego podejścia.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2019, 9, 2; 24-27
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies