Impact of Image Preprocessing on Recognition of Letters of Sign Language Wpływ przetwarzania wstępnego obrazów na rozpoznawanie znaków alfabetu migowego
The article concerns the problem of the selected sign language letters in the form of images classification. The impact of the image preprocessing methods as adaptive thresholding or edge detection is tested. In addition, the influence of the found shapes filling is checked, as well as centering the hands on the images. The following classification methods were chosen: SVM classifier with linear kernel function, Naive Bayes and Random Forests. The accuracy, F-measure, the AUC, MAE and Kappa coefficient were reported as measures of classification quality.
Artykuł dotyczy klasyfikacji wybranych liter alfabetu migowego w postaci obrazów. Badany jest wpływ na wyniki kilku metod przetwarzania wstępnego obrazów, w tym progowania adaptacyjnego oraz detekcji krawędzi. Dodatkowo sprawdzane jest wypełnianie znalezionych kształtów, a także centrowanie dłoni na obrazach. Jako metody klasyfikacji wybrane zostały: klasyfikator SVM z liniową funkcją jądrową, klasyfikator Naive Bayes oraz Random Forest. Jako miary jakości klasyfikacji raportowane są jakość klasyfikacji, miara F, pole pod krzywą ROC oraz współczynnik Kappa.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00