Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Impact of Image Preprocessing on Recognition of Letters of Sign Language

Tytuł:
Impact of Image Preprocessing on Recognition of Letters of Sign Language
Wpływ przetwarzania wstępnego obrazów na rozpoznawanie znaków alfabetu migowego
Autorzy:
Abramowicz, P.
Topczewska, M.
Powiązania:
https://bibliotekanauki.pl/articles/88414.pdf
Data publikacji:
2018
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
przetwarzanie wstępne
alfabet migowy
klasyfikacja
image preprocessing
sign language
classification
Źródło:
Advances in Computer Science Research; 2018, 14; 5-16
2300-715X
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The article concerns the problem of the selected sign language letters in the form of images classification. The impact of the image preprocessing methods as adaptive thresholding or edge detection is tested. In addition, the influence of the found shapes filling is checked, as well as centering the hands on the images. The following classification methods were chosen: SVM classifier with linear kernel function, Naive Bayes and Random Forests. The accuracy, F-measure, the AUC, MAE and Kappa coefficient were reported as measures of classification quality.

Artykuł dotyczy klasyfikacji wybranych liter alfabetu migowego w postaci obrazów. Badany jest wpływ na wyniki kilku metod przetwarzania wstępnego obrazów, w tym progowania adaptacyjnego oraz detekcji krawędzi. Dodatkowo sprawdzane jest wypełnianie znalezionych kształtów, a także centrowanie dłoni na obrazach. Jako metody klasyfikacji wybrane zostały: klasyfikator SVM z liniową funkcją jądrową, klasyfikator Naive Bayes oraz Random Forest. Jako miary jakości klasyfikacji raportowane są jakość klasyfikacji, miara F, pole pod krzywą ROC oraz współczynnik Kappa.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies