- Tytuł:
- Maximal functions for Weinstein operator
- Autorzy:
- Abdelkefi, Chokri
- Powiązania:
- https://bibliotekanauki.pl/articles/1795775.pdf
- Data publikacji:
- 2020-03-03
- Wydawca:
- Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie
- Tematy:
-
Weinstein operator
Weinstein transform
Weinstein translation operators
Maximal functions - Opis:
- In the present paper, we study in the harmonic analysis associated to the Weinstein operator, the boundedness on $L^p$ of the uncentered maximal function. First, we establish estimates for the Weinstein translation of characteristic function of a closed ball with radius $ε$ centered at 0 on the upper half space $\mathbbR^{d-1}× ]0,+∞[$. Second, we prove weak-type $L^1$-estimates for the uncentered maximal function associated with the Weinstein operator and we obtain the $L^p$-boundedness of this operator for $1 < p ≤+∞$. As application, we define a large class of operators such that each operator of this class satisfies these $L^p$-inequalities. In particular, the maximal operator associated respectively with the Weinstein heat semigroup and the Weinstein-Poisson semigroup belong to this class.
- Źródło:
-
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica; 2020, 19; 105-119
2300-133X - Pojawia się w:
- Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
- Dostawca treści:
- Biblioteka Nauki