Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Simultaneous Localization and Mapping" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Homography augmented particle filter SLAM
Autorzy:
Słowak, Paweł Leszek
Kaniewski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/27311746.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
Simultaneous Localization and Mapping
SLAM
homography matrix
particle filter
robot navigation
visual-inertial systems
Opis:
The article presents a comprehensive study of a visual-inertial simultaneous localization and mapping (SLAM) algorithm designed for aerial vehicles. The goal of the research is to propose an improvement to the particle filter SLAM system that allows for more accurate and robust navigation of unknown environments. The authors introduce a modification that utilizes a homography matrix decomposition calculated from the camera frame-to-frame relationships. This procedure aims to refine the particle filter proposal distribution of the estimated robot state. In addition, the authors implement a mechanism of calculating a homography matrix from robot displacement, which is utilized to eliminate outliers in the frame-to-frame feature detection procedure. The algorithm is evaluated using simulation and real-world datasets, and the results show that the proposed improvements make the algorithm more accurate and robust. Specifically, the use of homography matrix decomposition allows the algorithm to be more efficient, with a smaller number of particles, without sacrificing accuracy. Furthermore, the incorporation of robot displacement information helps improve the accuracy of the feature detection procedure, leading to more reliable and consistent results. The article concludes with a discussion of the implemented and tested SLAM solution, highlighting its strengths and limitations. Overall, the proposed algorithm is a promising approach for achieving accurate and robust autonomous navigation of unknown environments.
Źródło:
Metrology and Measurement Systems; 2023, 30, 3; 423--439
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simultaneous localization and mapping: A feature-based probabilistic approach
Autorzy:
Skrzypczyński, P.
Powiązania:
https://bibliotekanauki.pl/articles/929972.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
robot mobilny
lokalizacja równoczesna
dopasowanie właściwości
mobile robot
simultaneous localization and mapping
feature matching
Opis:
This article provides an introduction to Simultaneous Localization And Mapping (SLAM), with the focus on probabilistic SLAM utilizing a feature-based description of the environment. A probabilistic formulation of the SLAM problem is introduced, and a solution based on the Extended Kalman Filter (EKF-SLAM) is shown. Important issues of convergence, consistency, observability, data association and scaling in EKF-SLAM are discussed from both theoretical and practical points of view. Major extensions to the basic EKF-SLAM method and some recent advances in SLAM are also presented.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2009, 19, 4; 575-588
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Straight-lines modelling using planar information for monocular SLAM
Autorzy:
Santana, A. M.
Medeiros, A. A. D.
Powiązania:
https://bibliotekanauki.pl/articles/331312.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
SLAM
filtr Kalmana
transformata Hough'a
Simultaneous Localization and Mapping (SLAM)
Kalman filter
Hough transform
monocular vision
Opis:
This work proposes a SLAM (Simultaneous Localization And Mapping) solution based on an Extended Kalman Filter (EKF) in order to enable a robot to navigate along the environment using information from odometry and pre-existing lines on the floor. These lines are recognized by a Hough transform and are mapped into world measurements using a homography matrix. The prediction phase of the EKF is developed using an odometry model of the robot, and the updating makes use of the line parameters in Kalman equations without any intermediate stage for calculating the distance or the position. We show two experiments (indoor and outdoor) dealing with a real robot in order to validate the project.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 2; 409-421
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
SLAM – Based Approach to Dynamic Ship Positioning
Autorzy:
Wróbel, K. A.
Powiązania:
https://bibliotekanauki.pl/articles/116689.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Dynamic Ship Positioning
Simultaneous Localization and Mapping (SLAM)
Dynamic Positioning (DP)
Reference System
SLAM Method
SLAM Post-Processing
Doppler Velocity Log (DVL)
Hydroacoustics
Opis:
Dynamically positioned vessels, used by offshore industry, use not only satellite navigation but also different positioning systems, often referred to as ‘reference’ systems. Most of them use multiple technical devices located outside the vessel which creates some problems with their accessibility and performance. In this paper, a basic concept of reference system independent from any external device is presented, basing on hydroacoustics and Simultaneous Localization and Mapping (SLAM) method. Theoretical analysis of its operability is also performed.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2014, 8, 1; 21-25
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies