Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "SPARSE" wg kryterium: Temat


Wyświetlanie 1-57 z 57
Tytuł:
Incoherent Dictionary Learning for Sparse Representation in Network Anomaly Detection
Autorzy:
Andrysiak, Tomasz
Saganowski, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/1373708.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Jagielloński. Wydawnictwo Uniwersytetu Jagiellońskiego
Tematy:
dictionary learning
sparse representation
anomaly detection
Opis:
In this article we present the use of sparse representation of a signal and incoherent dictionary learning method for the purpose of network traffic analysis. In learning process we use 1D INK-SVD algorithm to detect proper dictionary structure. Anomaly detection is realized by parameter estimation of the analyzed signal and its comparative analysis to network traffic profiles. Efficiency of our method is examined with the use of extended set of test traces from real network traffic. Received experimental results confirm effectiveness of the presented method.
Źródło:
Schedae Informaticae; 2015, 24; 63-71
0860-0295
2083-8476
Pojawia się w:
Schedae Informaticae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weak Saturation Numbers for Sparse Graphs
Autorzy:
Faudree, Ralph J.
Gould, Ronald J.
Jacobson, Michael S.
Powiązania:
https://bibliotekanauki.pl/articles/29787240.pdf
Data publikacji:
2013-09-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
saturated graphs
sparse graphs
weak saturation
Opis:
For a fixed graph F, a graph G is F-saturated if there is no copy of F in G, but for any edge e ∉ G, there is a copy of F in G + e. The minimum number of edges in an F-saturated graph of order n will be denoted by sat(n, F). A graph G is weakly F-saturated if there is an ordering of the missing edges of G so that if they are added one at a time, each edge added creates a new copy of F. The minimum size of a weakly F-saturated graph G of order n will be denoted by wsat(n, F). The graphs of order n that are weakly F-saturated will be denoted by wSAT(n, F), and those graphs in wSAT(n, F) with wsat(n, F) edges will be denoted by wSAT(n, F). The precise value of wsat(n, T) for many families of sparse graphs, and in particular for many trees, will be determined. More specifically, families of trees for which wsat(n, T) = |T|−2 will be determined. The maximum and minimum values of wsat(n, T) for the class of all trees will be given. Some properties of wsat(n, T) and wSAT(n, T) for trees will be discussed. Keywords: saturated graphs, sparse graphs, weak saturation.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 4; 677-693
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A fault detection method based on stacking the SAE-SRBM for nonstationary and stationary hybrid processes
Autorzy:
Huang, Lei
Ren, Hao
Chai, Yi
Qu, Jianfeng
Powiązania:
https://bibliotekanauki.pl/articles/1838177.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fault detection
sparse autoencoder
sparse restricted Boltzmann machine
hybrid industrial processes
detekcja błędów
autoenkoder
proces przemysłowy
Opis:
This paper proposes a fault detection method by extracting nonlinear features for nonstationary and stationary hybrid industrial processes. The method is mainly built on the basis of a sparse auto-encoder and a sparse restricted Boltzmann machine (SAE-SRBM), so as to take advantages of their adaptive extraction and fusion on strong nonlinear symptoms. In the present work, SAEs are employed to reconstruct inputs and accomplish feature extraction by unsupervised mode, and their outputs present a knotty problem of an unknown probability distribution. In order to solve it, SRBMs are naturally used to fuse these unknown probability distribution features by transforming them into energy characteristics. The contribution of this method is the capability of further mining and learning of nonlinear features without considering the nonstationary problem. Also, this paper introduces a method of constructing labeled and unlabeled training samples while maintaining time series features. Unlabeled samples can be adopted to train the part for feature extraction and fusion, while labeled samples can be used to train the classification part. Finally, a simulation on the Tennessee Eastman process is carried out to demonstrate the effectiveness and excellent performance on fault detection for nonstationary and stationary hybrid industrial processes.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 1; 29-43
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recognition of the numbers in the Polish language
Autorzy:
Plichta, A.
Gąciarz, T.
Krzywdziński, T.
Powiązania:
https://bibliotekanauki.pl/articles/308844.pdf
Data publikacji:
2013
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
Automatic Speech Recognition
compressed sensing
Sparse Classification
Opis:
Automatic Speech Recognition is one of the hottest research and application problems in today’s ICT technologies. Huge progress in the development of the intelligent mobile systems needs an implementation of the new services, where users can communicate with devices by sending audio commands. Those systems must be additionally integrated with the highly distributed infrastructures such as computational and mobile clouds, Wireless Sensor Networks (WSNs), and many others. This paper presents the recent research results for the recognition of the separate words and words in short contexts (limited to the numbers) articulated in the Polish language. Compressed Sensing Theory (CST) is applied for the first time as a methodology of speech recognition. The effectiveness of the proposed methodology is justified in numerical tests for both separate words and short sentences.
Źródło:
Journal of Telecommunications and Information Technology; 2013, 4; 70-78
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Efektywna metoda przetwarzania macierzy rzadkich
Effective method of processing of sparse matrix
Autorzy:
Jabłoński, J.
Turos, J.
Powiązania:
https://bibliotekanauki.pl/articles/152889.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
kompresja
macierze rzadkie
compression
sparse matrix
Opis:
Wiele problemów optymalizacyjnych sprowadzanych jest do przetwarzania macierzy rzadkich o bardzo dużych rozmiarach. Tradycyjne metody operacji na macierzach o tak dużych rozmiarach jest czasochłonne dlatego poszukiwane są rozwiązania gwarantujące większą efektywność i krótszy czas przetwarzania. W artykule omówiono wybrane metody i zaproponowano autorską metodę wykorzystania kompresji w poprawie efektywności przetwarzania macierzy rzadkich.
Many optimization problems can be imported to processing of thin matrices about very large sizes. The traditional methods of operation on the matrices about so it is the large sizes time-consuming therefore the guaranteeing the larger efficiency solutions be in the demand and the shorter time of processing. This paper presented the author's method of utilization in improvement of efficiency the compression of processing of sparse matrix in presented study was introduced.
Źródło:
Pomiary Automatyka Kontrola; 2007, R. 53, nr 5, 5; 63-65
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A fault detection method based on stacking the SAE-SRBM for nonstationary and stationary hybrid processes
Autorzy:
Huang, Lei
Ren, Hao
Chai, Yi
Qu, Jianfeng
Powiązania:
https://bibliotekanauki.pl/articles/1838184.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fault detection
sparse autoencoder
sparse restricted Boltzmann machine
hybrid industrial processes
detekcja błędu
autoenkoder
proces przemysłowy
Opis:
This paper proposes a fault detection method by extracting nonlinear features for nonstationary and stationary hybrid industrial processes. The method is mainly built on the basis of a sparse auto-encoder and a sparse restricted Boltzmann machine (SAE-SRBM), so as to take advantages of their adaptive extraction and fusion on strong nonlinear symptoms. In the present work, SAEs are employed to reconstruct inputs and accomplish feature extraction by unsupervised mode, and their outputs present a knotty problem of an unknown probability distribution. In order to solve it, SRBMs are naturally used to fuse these unknown probability distribution features by transforming them into energy characteristics. The contribution of this method is the capability of further mining and learning of nonlinear features without considering the nonstationary problem. Also, this paper introduces a method of constructing labeled and unlabeled training samples while maintaining time series features. Unlabeled samples can be adopted to train the part for feature extraction and fusion, while labeled samples can be used to train the classification part. Finally, a simulation on the Tennessee Eastman process is carried out to demonstrate the effectiveness and excellent performance on fault detection for nonstationary and stationary hybrid industrial processes.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 1; 29-43
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The versatile hardware accelerator framework for sparse vector calculations
Autorzy:
Karwatowski, R.
Wiatr, K.
Powiązania:
https://bibliotekanauki.pl/articles/114705.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
FPGA
sparse vectors
cosine similarity
Zynq
hardware accelerator
Opis:
In this paper, we present the advantage of the ability of FPGAs to perform various computationally complex calculations using deep pipelining and parallelism. We propose an architecture that consists of many small stream processing blocks. The designed framework maintains proper data movement and synchronization. The architecture can be easily adapted to be implemented in FPGA devices of a various size and cost - from small SoC devices to high-end PCIe accelerator cards. It is capable to perform a selected operation on a sparse data that are loaded as the stream of vectors. As an example application, we have implemented the cosine similarity measure for the text similarity calculations that uses the TF-IDF weighting scheme. The presented example application calculates the similarity of texts from the set of input documents to documents from the large database. The scheme is used to find the most similar documents. The proposed design can decrease the service time of search queries in computer centers while reducing power consumption.
Źródło:
Measurement Automation Monitoring; 2015, 61, 7; 327-329
2450-2855
Pojawia się w:
Measurement Automation Monitoring
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Asymmetric double image encryption, compression and watermarking scheme based on orthogonal-triangular decomposition with column pivoting
Autorzy:
Anjana, Savita
Rakheja, Pankaj
Yadav, Ak
Singh, Phool
Singh, Hukum
Powiązania:
https://bibliotekanauki.pl/articles/2086764.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
QR decomposition
Fresnel transform
sparse matrix
asymmetric cryptosystem
Opis:
A novel asymmetric scheme for double image encryption, compression and watermarking based on QR decomposition in the Fresnel domain has been presented. The QR decomposition provides a permutation matrix as a ciphertext, and the product of orthogonal and triangular matrix as a key. The ciphertext obtained through this process is a sparse matrix that is compressed by the CSR method to give compressed encrypted data, which when combined with a host image, gives a watermarked image. Thus, a cryptosystem that involves compression and watermarking is proposed. The proposed scheme is validated for grayscale images. To check the efficacy of the proposed scheme, histograms, statistical parameters, and key sensitivity are analyzed. The scheme is also tested against various attacks. Numerical simulations are performed to validate the security of the scheme.
Źródło:
Optica Applicata; 2022, 52, 2; 283--295
0078-5466
1899-7015
Pojawia się w:
Optica Applicata
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Równoległa implementacja metod iteracyjnych dla układu równań z macierzami rzadkimi
Parallel implementation of iterative methods for sparse linear systems
Autorzy:
Schubring, T.
Powiązania:
https://bibliotekanauki.pl/articles/250420.pdf
Data publikacji:
2013
Wydawca:
Instytut Naukowo-Wydawniczy TTS
Tematy:
metoda iteracyjna
macierze rzadkie
UPC
iterative method
sparse matrix
Opis:
W artykule podano równoległą implementację metod rozwiązywania układu równań liniowych z macierzą rzadką w języku programowania UPC (Unified Parallel C). Uwzględniono możliwości środowiska programistycznego Berkeley UPC oraz format spakowanych wierszy CSR (Compressed Sparse Row).
Paper described a parallel implementation of the iterative methods for solving linear equation systems with sparse matrix in the UPC programming language (Unified Parallel C). Possibilities of the Berkeley UPC development environment and the CSR packed rows format (Compressed Sparse Row) were included.
Źródło:
TTS Technika Transportu Szynowego; 2013, 10; 499-505, CD
1232-3829
2543-5728
Pojawia się w:
TTS Technika Transportu Szynowego
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
High-resolution Direction of Arrival Estimation Method Based on Sparse Arrays with Minimum Number of Elements
Autorzy:
Mohammed, Jafar Ramadhan
Powiązania:
https://bibliotekanauki.pl/articles/1839475.pdf
Data publikacji:
2021
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
compressed sensing
direction of arrival
DOA
estimation
sparse array
Opis:
Regular fully filled antenna arrays have been widely used in direction of arrival (DOA) estimation. However, practical implementation of these arrays is rather complex and their resolutions are limited to the beamwidth of the array pattern. Therefore, higher resolution and simpler methods are desirable. In this paper, the compressed sensing method is first applied to an initial fully filled array to randomly select the most prominent and effective elements which are used to form the sparse array. To keep the dimension of the sparse array equal to that of the fully filled array, the first and the last elements were excluded from the sparseness process. In addition, some constraints on the sparse spectrum are applied to increase estimation accuracy. The optimization problem is then solved iteratively using the iterative reweighted l1 norm. Finally, a simple searching algorithm is used to detect peaks in the spectrum solution that correspond to the directions of the arriving signals. Compared with the existing scanned beam methods, such as the minimum variance distortionless response (MVDR) technique, and with subspace approaches, such as multiple signal classification (MUSIC) and ESPIRT algorithms, the proposed sparse array method offers better performance even with a lower number of array elements and in severely noisy environments. Effectiveness of the proposed sparse array method is verified via computer simulations.
Źródło:
Journal of Telecommunications and Information Technology; 2021, 1; 8-14
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
High-resolution Direction of Arrival Estimation Method Based on Sparse Arrays with Minimum Number of Elements
Autorzy:
Mohammed, Jafar Ramadhan
Powiązania:
https://bibliotekanauki.pl/articles/1839489.pdf
Data publikacji:
2021
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
compressed sensing
direction of arrival
DOA
estimation
sparse array
Opis:
Regular fully filled antenna arrays have been widely used in direction of arrival (DOA) estimation. However, practical implementation of these arrays is rather complex and their resolutions are limited to the beamwidth of the array pattern. Therefore, higher resolution and simpler methods are desirable. In this paper, the compressed sensing method is first applied to an initial fully filled array to randomly select the most prominent and effective elements which are used to form the sparse array. To keep the dimension of the sparse array equal to that of the fully filled array, the first and the last elements were excluded from the sparseness process. In addition, some constraints on the sparse spectrum are applied to increase estimation accuracy. The optimization problem is then solved iteratively using the iterative reweighted l1 norm. Finally, a simple searching algorithm is used to detect peaks in the spectrum solution that correspond to the directions of the arriving signals. Compared with the existing scanned beam methods, such as the minimum variance distortionless response (MVDR) technique, and with subspace approaches, such as multiple signal classification (MUSIC) and ESPIRT algorithms, the proposed sparse array method offers better performance even with a lower number of array elements and in severely noisy environments. Effectiveness of the proposed sparse array method is verified via computer simulations.
Źródło:
Journal of Telecommunications and Information Technology; 2021, 1; 8-14
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pre-trained deep neural network using sparse autoencoders and scattering wavelet transform for musical genre recognition
Autorzy:
Kleć, M.
Korzinek, D.
Powiązania:
https://bibliotekanauki.pl/articles/952940.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Sparse Autoencoders
deep learning
genre recognition
Scattering Wavelet Transform
Opis:
Research described in this paper tries to combine the approach of Deep Neural Networks (DNN) with the novel audio features extracted using the Scatter- Ing Wavelet Transform (SWT) for classifying musical genres. The SWT uses A sequence of Wavelet Transforms to compute the modulation spectrum coef- Ficients of multiple orders, which has already shown to be promising for this Task. The DNN in this work uses pre-trained layers using Sparse Autoencoders (SAE). Data obtained from the Creative Commons website jamendo.com is Used to boost the well-known GTZAN database, which is a standard bench- mark for this task. The final classifier is tested using a 10-fold cross validation To achieve results similar to other state-of-the-art approaches.
Źródło:
Computer Science; 2015, 16 (2); 133-144
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effects of Sparse Initialization in Deep Belief Networks
Autorzy:
Grzegorczyk, K.
Kurdziel, M.
Wójcik, P. I.
Powiązania:
https://bibliotekanauki.pl/articles/305264.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
sparse initialization
Deep Belief Networks
Noisy Rectified Linear Units
Opis:
Deep neural networks are often trained in two phases: first, hidden layers are pretrained in an unsupervised manner, and then the network is fine-tuned with error backpropagation. Pretraining is often carried out using Deep Belief Networks (DBNs), with initial weights set to small random values. However, recent results established that well-designed initialization schemes, e.g., Sparse Initialization (SI), can greatly improve the performance of networks that do not use pretraining. An interesting question arising from these results is whether such initialization techniques wouldn’t also improve pretrained networks. To shed light on this question, in this work we evaluate SI in DBNs that are used to pretrain discriminative networks. The motivation behind this research is our observation that SI has an impact on the features learned by a DBN during pretraining. Our results demonstrate that this improves network performance: when pretraining starts from sparsely initialized weight matrices, networks achieve lower classification errors after fine-tuning.
Źródło:
Computer Science; 2015, 16 (4); 313-327
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Real-time motion tracking using optical flow on multiple GPUs
Autorzy:
Mahmoudi, S. A.
Kierzynka, M.
Manneback, P.
Kurowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/200476.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Lucas-Kanade method
sparse optical flow
multiple GPU computations
Opis:
Motion tracking algorithms are widely used in computer vision related research. However, the new video standards, especially those in high resolutions, cause that current implementations, even running on modern hardware, no longer meet the needs of real-time processing. To overcome this challenge several GPU (Graphics Processing Unit) computing approaches have recently been proposed. Although they present a great potential of a GPU platform, hardly any is able to process high definition video sequences efficiently. Thus, a need arose to develop a tool being able to address the outlined problem. In this paper we present software that implements optical flow motion tracking using the Lucas-Kanade algorithm. It is also integrated with the Harris corner detector and therefore the algorithm may perform sparse tracking, i.e. tracking of the meaningful pixels only. This allows to substantially lower the computational burden of the method. Moreover, both parts of the algorithm, i.e. corner selection and tracking, are implemented on GPU and, as a result, the software is immensely fast, allowing for real-time motion tracking on videos in Full HD or even 4K format. In order to deliver the highest performance, it also supports multiple GPU systems, where it scales up very well.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2014, 62, 1; 139-150
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of sparse linear discriminant analysis for prediction of protein-protein interactions
Autorzy:
Stąpor, K.
Fabian, P.
Powiązania:
https://bibliotekanauki.pl/articles/95137.pdf
Data publikacji:
2016
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
sparse discriminant analysis
feature selection
protein-protein interaction
Opis:
To understand the complex cellular mechanisms involved in a biological system, it is necessary to study protein-protein interactions (PPIs) at the molecular level, in which prediction of PPIs plays a significant role. In this paper we propose a new classification approach based on the sparse discriminant analysis [10] to predict obligate (permanent) and non-obligate (transient) protein-protein interactions. The sparse discriminant analysis [10] circumvents the limitations of the classical discriminant analysis [4, 9] in the high dimensional low sample size settings by incorporating inherently the feature selection into the optimization procedure. To characterize properties of protein interaction, we proposed to use the binding free energies. The performance of our proposed classifier is 75% ± 5%.
Źródło:
Information Systems in Management; 2016, 5, 1; 109-118
2084-5537
2544-1728
Pojawia się w:
Information Systems in Management
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Single Image Super-Resolution through Sparse Representation via Coupled Dictionary learning
Autorzy:
Patel, Rutul
Thakar, Vishvjit
Joshi, Rutvij
Powiązania:
https://bibliotekanauki.pl/articles/226607.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
single image super-resolution
Dictionary Learning
Sparse representation
Opis:
Single Image Super-Resolution (SISR) through sparse representation has received much attention in the past decade due to significant development in sparse coding algorithms. However, recovering high-frequency textures is a major bottleneck of existing SISR algorithms. Considering this, dictionary learning approaches are to be utilized to extract high-frequency textures which improve SISR performance significantly. In this paper, we have proposed the SISR algorithm through sparse representation which involves learning of Low Resolution (LR) and High Resolution (HR) dictionaries simultaneously from the training set. The idea of training coupled dictionaries preserves correlation between HR and LR patches to enhance the Super-resolved image. To demonstrate the effectiveness of the proposed algorithm, a visual comparison is made with popular SISR algorithms and also quantified through quality metrics. The proposed algorithm outperforms compared to existing SISR algorithms qualitatively and quantitatively as shown in experimental results. Furthermore, the performance of our algorithm is remarkable for a smaller training set which involves lesser computational complexity. Therefore, the proposed approach is proven to be superior based upon visual comparisons and quality metrics and have noticeable results at reduced computational complexity.
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 2; 347-353
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
CG-SCMA Codebook Design Based on Maximized Euclidian Distance
Autorzy:
Mohamed, Sura S.
Abdullah, Hikmat N.
Powiązania:
https://bibliotekanauki.pl/articles/2200958.pdf
Data publikacji:
2023
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
codebook
Euclidian distance
MPA
multiple access
sparse code
Opis:
Sparse code multiple access (SCMA) is a multi-dimensional codebook based on a class of non-orthogonal multiple access (NOMA) technologies enabling the delivery of non-orthogonal resource elements to numerous users in 5G wireless communications without increasing complexity. This paper proposes a computer-generated sparse code multiple access (CG-SCMA) technique, where the minimum Euclidian distance (MED) of a star 16-point quadrature amplitude modulation is maximized by CG-SCMA, thus creating a complex SCMA codebook based on optimizing the difference between the first and other radiuses over rotated constellations. To specify the most suitable values for this constellation, it is divided into four sub-constellations using trellis coded modulation (TCM) in an effort to optimize MED. The new codebook has four sub-constellations with MED values of 3.85, 2.26, 2.26, and 3.85, respectively. Application of the message passing algorithm (MPA) ensures low complexity of the decoding process
Źródło:
Journal of Telecommunications and Information Technology; 2023, 1; 18--24
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Blind Estimation of Linear and Nonlinear Sparse Channels
Autorzy:
Georgoulakis, K.
Powiązania:
https://bibliotekanauki.pl/articles/307846.pdf
Data publikacji:
2013
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
blind estimation and equalization
clustering techniques
sparse zero pad channels
Opis:
This paper presents a Clustering Based Blind Channel Estimator for a special case of sparse channels - the zero pad channels. The proposed algorithm uses an unsupervised clustering technique for the estimation of data clusters. Clusters labelling is performed by a Hidden Markov Model of the observation sequence appropriately modified to exploit channel sparsity. The algorithm achieves a substantial complexity reduction compared to the fully evaluated technique. The proposed algorithm is used in conjunction with a Parallel Trellis Viterbi Algorithm for data detection and simulation results show that the overall scheme exhibits the reduced complexity benefits without performance reduction.
Źródło:
Journal of Telecommunications and Information Technology; 2013, 1; 65-71
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluating four remote sensing based models to estimate latent heat flux in semi-arid climate for heterogeneous surface coverage of western Algeria
Autorzy:
Oualid, Tewfik A.
Hamimed, Abderahmane
Khaldi, Abdelkader
Powiązania:
https://bibliotekanauki.pl/articles/2174320.pdf
Data publikacji:
2022
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
Algeria
energy balance
evapotranspiration
Landsat
METRIC
SPARSE
TIM
TSEB
Opis:
Optimal estimation of water balance components at the local and regional scales is essential for many applications such as integrated water resources management, hydrogeological modelling and irrigation scheduling. Evapotranspiration is a very important component of the hydrological cycle at the soil surface, particularly in arid and semi-arid lands. Mapping evapotranspiration at high resolution with internalised calibration (METRIC), trapezoid interpolation model (TIM), two-source energy balance (TSEB), and soil-plant-atmosphere and remote sensing evapotranspiration (SPARSE) models were applied using Landsat 8 images for four dates during 2014-2015 and meteorological data. Surface energy maps were then generated. Latent heat flux estimated by four models was then compared and evaluated with those measured by applying the method of Bowen ratio for the various days. In warm periods with high water stress differences and with important surface temperature differences, METRIC proves to be the most robust with the root-mean-square error (RMSE) less than 40 W∙m-2. However, during the periods with no significant surface temperature and soil humidity differences, SPARSE model is superior with the RMSE of 35 W∙m-2. The results of TIM are close to METRIC, since both models are sensitive to the difference in surface temperature. However, SPARSE remains reliable with the RMSE of 55 W∙m-2 unlike TSEB, which has a large deviation from the other models. On the other hand, during the days when the temperature difference is small, SPARSE and TSEB are superior, with a clear advantage of SPARSE serial version, where temperature differences are less important.
Źródło:
Journal of Water and Land Development; 2022, 55; 259--275
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speech Enhancement Based on Constrained Low-rank Sparse Matrix Decomposition Integrated with Temporal Continuity Regularisation
Autorzy:
Sun, Chengli
Yuan, Conglin
Powiązania:
https://bibliotekanauki.pl/articles/178075.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
speech enhancement
temporal continuity
low-rank decomposition
sparse decomposition
Opis:
Speech enhancement in strong noise condition is a challenging problem. Low-rank and sparse matrix decomposition (LSMD) theory has been applied to speech enhancement recently and good performance was obtained. Existing LSMD algorithms consider each frame as an individual observation. However, real-world speeches usually have a temporal structure, and their acoustic characteristics vary slowly as a function of time. In this paper, we propose a temporal continuity constrained low-rank sparse matrix decomposition (TCCLSMD) based speech enhancement method. In this method, speech separation is formulated as a TCCLSMD problem and temporal continuity constraints are imposed in the LSMD process. We develop an alternative optimisation algorithm for noisy spectrogram decomposition. By means of TCCLSMD, the recovery speech spectrogram is more consistent with the structure of the clean speech spectrogram, and it can lead to more stable and reasonable results than the existing LSMD algorithm. Experiments with various types of noises show the proposed algorithm can achieve a better performance than traditional speech enhancement algorithms, in terms of yielding less residual noise and lower speech distortion.
Źródło:
Archives of Acoustics; 2019, 44, 4; 681-692
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Error Analysis of Sound Source Directivity Interpolation Based on Spherical Harmonics
Autorzy:
Szwajcowski, Adam
Krause, Daniel
Snakowska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/1953503.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
sound source directivity
spherical harmonics
interpolation error
sparse measurements
Opis:
Precise measurement of the sound source directivity not only requires special equipment, but also is time-consuming. Alternatively, one can reduce the number of measurement points and apply spatial interpolation to retrieve a high-resolution approximation of directivity function. This paper discusses the interpolation error for different algorithms with emphasis on the one based on spherical harmonics. The analysis is performed on raw directivity data for two loudspeaker systems. The directivity was measured using sampling schemes of different densities and point distributions (equiangular and equiareal). Then, the results were interpolated and compared with these obtained on the standard 5° regular grid. The application of the spherical harmonic approximation to sparse measurement data yields a mean error of less than 1 dB with the number of measurement points being reduced by 89%. The impact of the sparse grid type on the retrieval error is also discussed. The presented results facilitate optimal sampling grid choice for low-resolution directivity measurements.
Źródło:
Archives of Acoustics; 2021, 46, 1; 95-104
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Parallel Algorithms for Forward and Back Substitution in Linear Algebraic Equations of Finite Element Method
Autorzy:
Fialko, Sergiy
Powiązania:
https://bibliotekanauki.pl/articles/308616.pdf
Data publikacji:
2019
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
finite element method
multithreaded parallelization
sparse symmetric matrices
triangular solution
Opis:
This paper considers several algorithms for parallelizing the procedure of forward and back substitution for high-order symmetric sparse matrices on multi-core computers with shared memory. It compares the proposed approaches for various finite-element problems of structural mechanics which generate sparse matrices of different structures.
Źródło:
Journal of Telecommunications and Information Technology; 2019, 4; 20-29
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Semantic Sparse Representation of Disease Patterns
Autorzy:
Przelaskowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/226810.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sparse representation
compressive sensing
information theory
semantic information
disease pattern
Opis:
Sparse data representation is discussed in a context of useful fundamentals led to semantic content description and extraction of information. Disease patterns as semantic information extracted from medical images were underlined because of discussed application of computer-aided diagnosis. Compressive sensing rules were adjusted to the requirements of diagnostic pattern recognition. Proposed methodology of sparse disease patterns considers accuracy of sparse representation to estimate target content for detailed analysis. Semantics of sparse representation were modeled by morphological content analysis. Subtle or hidden components were extracted and displayed to increase information completeness. Usefulness of sparsity was verified for computer-aided diagnosis of stroke based on brain CT scans. Implemented method was based on selective and sparse representation of subtle hypodensity to improve diagnosis. Visual expression of disease signatures was fixed to radiologist requirements, domain knowledge and experimental analysis issues. Diagnosis assistance suitability was proven by experimental subjective rating and automatic recognition.
Źródło:
International Journal of Electronics and Telecommunications; 2010, 56, 3; 273-280
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design Low Complexity SCMA Codebook Using Arnold’s Cat Map
Autorzy:
Mohamed, Sura S.
Abdullah, Hikmat N.
Powiązania:
https://bibliotekanauki.pl/articles/2174447.pdf
Data publikacji:
2022
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
chaotic interleaving
codebook design
dimension rotation
Euclidean distance
sparse code multiple access
Opis:
In 5G wireless communications, sparse code multiple access (SCMA) – a multi-dimensional codebook based on a specific category of the non-orthogonal multiple access (NOMA) technique - enables many users to share non-orthogonal resource components with a low level of detection complexity. The multi-dimensional SCMA (MD-SCMA) codebook design presented in this study is based on the constellation rotation and interleaving method. Initially, a subset of the lattice Z 2 is used to form the mother constellation’s initial dimension. The first dimension is then rotated to produce other dimensions. Additionally, interleaving is employed for even dimensions to enhance fading channel performance. Arnold’s chaotic cat map is proposed as the interleaving method to reduce computational complexity. Performance of the SCMA codebook based on interleaving is evaluated by comparing it with selected codebooks for SCMA multiplexing. The metrics used for performance evaluation purposes include bit error rate (BER), peak to average power ratio (PAPR), and minimum Euclidean distance (MED), as well as complexity. The results demonstrate that the suggested codebook with chaotic interleaving offers performance that is equivalent to that of the conventional codebook based on interleaving. It is characterized by lower MED and higher BER compared to computer-generated and 16-star QAM codebook design approaches, but its complexity is lower than that of the conventional codebook based on interleaving.
Źródło:
Journal of Telecommunications and Information Technology; 2022, 4; 13--20
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computational aspects of GPU - accelerated sparse matrix - vector multiplication for solving Markov models
Obliczeniowe aspekty mnożenia macierzy rzadkiej przez wektor dla rozwiązywania modeli Markowa przyspieszanego przez karty GPU
Autorzy:
Bylina, B.
Bylina, J.
Karwacki, M.
Powiązania:
https://bibliotekanauki.pl/articles/375696.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Markovian models
wireless network models
GPU
matrix-vector multiplication
sparse matrices
Opis:
In this article we investigate some computational aspects of GPU-accelerated matrix-vector multiplication where matrix is sparse. Particularly, we deal with sparse matrices appearing in modelling with Markovian queuing models. The model we use for research is a Markovian queuing model of a wireless device. This model describes the device’s behavior during possible channel occupation by other devices. We study the efficiency of multiplication of a sparse matrix by a dense vector with the use of an appropriate, ready-to-use GPU-accelerated mathematical library, namely CUSP. For the CUSP library we discuss data structures and their impact on the CUDA platform for the fine-grained parallel architecture of the GPU. Our aim is to find the best format for storing a sparse matrix for GPU-computation (especially one associated with the Markovian model of a wireless device). We compare the time, the performance and the speed-up for the card NVIDIA Tesla C2050 (with ECC ON). For unstructured matrices (as our Markovian matrices), we observe speed-ups (in respect to CPU-only computations) of over 8 times.
Łańcuchy Markowa są przydatnym narzędziem do modelowania systemów złożonych, takich jak systemy i sieci komputerowe. W ostatnich latach łańcuchy Markowa zostały z powodzeniem wykorzystane do oceny pracy sieci bezprzewodowych. Jednym z problemów jaki się pojawia przy wykorzystywaniu łańcuchów Markowa w modelowaniu sieci są problemy natury obliczeniowej. W artykule zajmiemy się badaniem mnożenia macierzy rzadkiej przez wektor, które jest jedną z głównych operacji podczas numerycznego rozwiązywania modeli Markowowskich. Aby, przyspieszyć czas obliczeń mnożenia macierz rzadkiej przez wektor wykorzystano funkcje z biblioteki CUSP. Biblioteka jest zbiorem funkcji wykonywanych na GPU (ang.Graphics Processing Unit) celem skrócenia czasu obliczeń. Do testowania operacji mnożenia macierzy rzadkiej przez wektor badano macierze z Markowowskiego modelu pracy sieci bezprzewodowej. Model ten opisuje zachowanie urządzenia, gdy kanał transmisyjnych może być zajęty przez inne urządzenia. Macierz przejść wspomnianego modelu jest macierzą rzadką i potrzeba specialnej struktury danych do jej przechowywania, dlatego w artykule dyskutowane są różne struktury danych dla macierzy rzadkich i ich przydatność do obliczen na kartach graficznych. W pracy porównano czas, wydajność i przyspieszenie jakie otrzymano podczas testowania biblioteki CUSP na karcie NVIDIA Tesla C2050 dla niestrukturalnych macierzy rzadkich opisujących model zajętości węzła w sieciach bezprzewodowych przy różnych formatach przechowywania macierzy rzadkich. Dla testowanych macierzy zauważono ośmiokrotne przyspieszenie obliczeń przy wykorzystaniu karty graficznej.
Źródło:
Theoretical and Applied Informatics; 2011, 23, 2; 127-145
1896-5334
Pojawia się w:
Theoretical and Applied Informatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Underwater target direction of arrival estimation by small acoustic sensor array based on sparse bayesian learning
Autorzy:
Wang, B.
He, C.
Powiązania:
https://bibliotekanauki.pl/articles/260588.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
DOA
underwater acoustic signal processing
sparse Bayesian learning
temporally correlated source
Opis:
Assuming independently but identically distributed sources, the traditional DOA (direction of arrival) estimation method of underwater acoustic target normally has poor estimation performance and provides inaccurate estimation results. To solve this problem, a new high-accuracy DOA algorithm based on sparse Bayesian learning algorithm is proposed in terms of temporally correlated source vectors. In novel method, we regarded underwater acoustic source as a first-order auto-regressive process. And then we used the new algorithm of multi-vector SBL to reconstruct the signal spatial spectrum. Then we used the CS-MMV model to estimate the DOA. The experiment results have shown the novel algorithm has a higher spatial resolution and estimation accuracy than other DOA algorithms in the cases of less array element space and less snapshots.
Źródło:
Polish Maritime Research; 2017, S 2; 95-102
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design of Sparse FIR Filters with Low Group Delay
Autorzy:
Konopacki, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/1844604.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
digital filters
FIR filter design
sparse filters
reduced group delay filters
Opis:
The aim of the work is to present the method for designing sparse FIR filters with very low group delay and approximately linear-phase in the passband. Significant reduction of the group delay, e.g. several times in relation to the linear phase filter, may cause the occurrence of undesirable overshoot in the magnitude frequency response. The method proposed in this work consists of two stages. In the first stage, FIR filter with low group delay is designed using minimax constrained optimization that provides overshoot elimination. In the second stage, the same process is applied iteratively to reach sparse solution. Design examples demonstrate the effectiveness of the proposed method.
Źródło:
International Journal of Electronics and Telecommunications; 2021, 67, 1; 121-126
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Frequency Selection Based Separation of Speech Signals with Reduced Computational Time Using Sparse NMF
Autorzy:
Varshney, Y. V.
Abbasi, Z. A.
Abidi, M. R.
Farooq, O.
Powiązania:
https://bibliotekanauki.pl/articles/176829.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sparse NMF
non-negative matrix factorisation
mixed speech recognition
machine learning
Opis:
Application of wavelet decomposition is described to speed up the mixed speech signal separation with the help of non-negative matrix factorisation (NMF). It is assumed that the basis vectors of training data of individual speakers had been recorded. In this paper, the spectrogram magnitude of a mixed signal has been factorised with the help of NMF with consideration of sparseness of speech signals. The high frequency components of signal contain very small amount of signal energy. By rejecting the high frequency components, the size of input signal is reduced, which reduces the computational time of matrix factorisation. The signal of lower energy has been separated by using wavelet decomposition. The present work is done for wideband microphone speech signal and standard audio signal from digital video equipment. This shows an improvement in the separation capability using the proposed model as compared with an existing one in terms of correlation between separated and original signals. Obtained signal to distortion ratio (SDR) and signal to interference ratio (SIR) are also larger as compare of the existing model. The proposed model also shows a reduction in computational time, which results in faster operation.
Źródło:
Archives of Acoustics; 2017, 42, 2; 287-295
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Local Characterisation and Detection of Woven Fabric Texture Based on a Sparse Dictionary
Autorzy:
Wu, Ying
Wang, Ren
Lou, Lin
Wang, Lali
Wang, Jun
Powiązania:
https://bibliotekanauki.pl/articles/2172000.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
fabric texture representation
sparse representation
weave repeat
defect detection
dictionary learning
Opis:
To achieve enhanced accuracy of fabric representation and defect detection, an innovative approach using a sparse dictionary with small patches was used for fabric texture characterisation. The effectiveness of the algorithm proposed was tested through comprehensive characterisation by studying eight weave patterns: plain, twill, weft satin, warp satin, basket, honeycomb, compound twill, and diamond twill and detecting fabric defects. Firstly, the main parameters such as dictionary size, patch size, and cardinality T were optimised, and then 40 defect-free fabric samples were characterised by the algorithm proposed. Subsequently, the Impact of the weave pattern was investigated based on the representation result and texture structure. Finally, defective fabrics were detected. The algorithm proposed is an alternative simple and scalable method to characterise fabric texture and detect textile defects in a single step without extracting features or prior information.
Źródło:
Fibres & Textiles in Eastern Europe; 2022, 3 (151); 33--40
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimal sparse boundary control for a semilinear parabolic equation with mixed control-state constraints
Autorzy:
Casas, Eduardo
Troltzsch, Fredi
Powiązania:
https://bibliotekanauki.pl/articles/970122.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
semilinear parabolic equation
optimal control
sparse boundary control
mixed control-state constraints
Opis:
A problem of sparse optimal boundary control for a semilinear parabolic partial differential equation is considered, where pointwise bounds on the control and mixed pointwise control-state constraints are given. A standard quadratic objective functional is to be minimized that includes a Tikhonov regularization term and the L1-norm of the control accounting for the sparsity. Applying a recent linearization theorem, we derive first-order necessary optimality conditions in terms of a variational inequality under linearized mixed control state constraints. Based on this preliminary result, a Lagrange multiplier rule with bounded and measurable multipliers is derived and sparsity results on the optimal control are demonstrated.
Źródło:
Control and Cybernetics; 2019, 48, 1; 89-124
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Incoherent Discriminative Dictionary Learning for Speech Enhancement
Autorzy:
Shaheen, D.
Dakkak, O. A.
Wainakh, M.
Powiązania:
https://bibliotekanauki.pl/articles/308116.pdf
Data publikacji:
2018
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
ADMM
l1 minimization algorithms
sparse coding
speech enhancement
supervised dictionary learning
Opis:
Speech enhancement is one of the many challenging tasks in signal processing, especially in the case of nonstationary speech-like noise. In this paper a new incoherent discriminative dictionary learning algorithm is proposed to model both speech and noise, where the cost function accounts for both “source confusion” and “source distortion” errors, with a regularization term that penalizes the coherence between speech and noise sub-dictionaries. At the enhancement stage, we use sparse coding on the learnt dictionary to find an estimate for both clean speech and noise amplitude spectrum. In the final phase, the Wiener filter is used to refine the clean speech estimate. Experiments on the Noizeus dataset, using two objective speech enhancement measures: frequency-weighted segmental SNR and Perceptual Evaluation of Speech Quality (PESQ) demonstrate that the proposed algorithm outperforms other speech enhancement methods tested.
Źródło:
Journal of Telecommunications and Information Technology; 2018, 3; 42-54
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Time-shifted Pilot-based Scheduling with Adaptive Optimization for Pilot Contamination Reduction in Massive MIMO
Autorzy:
Kumar, Ambala Pradeep
Srinivasulu, Tadisetty
Powiązania:
https://bibliotekanauki.pl/articles/1839309.pdf
Data publikacji:
2020
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
massive MIMO
pilot contamination
sparse FCM
time-shifted pilot scheduling
user grouping
Opis:
Massive multiple-input multiple-output (MIMO) is considered to be an emerging technique in wireless communication systems, as it offers the ability to boost channel capacity and spectral efficiency. However, a massive MIMO system requires huge base station (BS) antennas to handle users and suffers from inter-cell interference that leads to pilot contamination. To cope with this, time-shifted pilots are devised for avoiding interference between cells, by rearranging the order of transmitting pilots in different cells. In this paper, an adaptive-elephant-based spider monkey optimization (adaptive ESMO) mechanism is employed for time-shifted optimal pilot scheduling in a massive MIMO system. Here, user grouping is performed with the sparse fuzzy c-means (Sparse FCM) algorithm, grouping users based on such parameters as large-scale fading factor, SINR, and user distance. Here, the user grouping approach prevents inappropriate grouping of users, thus enabling effective grouping, even under the worst conditions in which the channel operates. Finally, optimal time-shifted scheduling of the pilot is performed using the proposed adaptive ESMO concept designed by incorporating adaptive tuning parameters. The efficiency of the adaptive ESMO approach is evaluated and reveals superior performance with the highest achievable uplink rate of 43.084 bps/Hz, the highest SINR of 132.9 dB, and maximum throughput of 2.633 Mbps.
Źródło:
Journal of Telecommunications and Information Technology; 2020, 4; 10-21
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A proximal-based algorithm for piecewise sparse approximation with application to scattered data fitting
Autorzy:
Zhong, Yijun
Li, Chongjun
Li, Zhong
Duan, Xiaojuan
Powiązania:
https://bibliotekanauki.pl/articles/2172132.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
piecewise sparse approximation
proximal gradient
scattered data fitting
aproksymacja rzadka
gradient proksymalny
dopasowanie danych
Opis:
In some applications, there are signals with a piecewise structure to be recovered. In this paper, we propose a piecewise sparse approximation model and a piecewise proximal gradient method (JPGA) which aim to approximate piecewise signals. We also make an analysis of the JPGA based on differential equations, which provides another perspective on the convergence rate of the JPGA. In addition, we show that the problem of sparse representation of the fitting surface to the given scattered data can be considered as a piecewise sparse approximation. Numerical experimental results show that the JPGA can not only effectively fit the surface, but also protect the piecewise sparsity of the representation coefficient.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 4; 671--682
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An autoencoder-enhanced stacking neural network model for increasing the performance of intrusion detection
Autorzy:
Brunner, Csaba
Kő, Andrea
Fodor, Szabina
Powiązania:
https://bibliotekanauki.pl/articles/2147134.pdf
Data publikacji:
2022
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
intrusion detection
neural network
ensemble classifiers
hyperparameter optimization
sparse autoencoder
NSL-KDD
machine learning
Opis:
Security threats, among other intrusions affecting the availability, confidentiality and integrity of IT resources and services, are spreading fast and can cause serious harm to organizations. Intrusion detection has a key role in capturing intrusions. In particular, the application of machine learning methods in this area can enrich the intrusion detection efficiency. Various methods, such as pattern recognition from event logs, can be applied in intrusion detection. The main goal of our research is to present a possible intrusion detection approach using recent machine learning techniques. In this paper, we suggest and evaluate the usage of stacked ensembles consisting of neural network (SNN) and autoencoder (AE) models augmented with a tree-structured Parzen estimator hyperparameter optimization approach for intrusion detection. The main contribution of our work is the application of advanced hyperparameter optimization and stacked ensembles together. We conducted several experiments to check the effectiveness of our approach. We used the NSL-KDD dataset, a common benchmark dataset in intrusion detection, to train our models. The comparative results demonstrate that our proposed models can compete with and, in some cases, outperform existing models.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2022, 12, 2; 149--163
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel method of health indicator construction and remaining useful life prediction based on deep learning
Autorzy:
Zhan, Xianbiao
Liu, Zixuan
Yan, Hao
Wu, Zhenghao
Guo, Chiming
Jia, Xisheng
Powiązania:
https://bibliotekanauki.pl/articles/27312791.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
stacked sparse autoencoder
health indicator
long short-term memory network
remaining useful life prediction
Opis:
The construction of health indicators (HI) for traditional deep learning requires human training labels and poor interpretability. This paper proposes an HI construction method based on Stacked Sparse Autoencoder (SSAE) and combines SSAE with Long short-term memory (LSTM) network to predict the remaining useful life (RUL). Extracting features from a single domain may result in insufficient feature extraction and cannot comprehensively reflect the degradation status information of mechanical equipment. In order to solve the problem, this article extracts features from time domain, frequency domain, and time-frequency domain to construct a comprehensive original feature set. Based on monotonicity, trendiness, and robustness, the most sensitive features from the original feature set are selected and put into the SSAE network to construct HI for state partitioning, and then LSTM is used for RUL prediction. By comparing with the existing methods, it is proved that the prediction effect of the proposed method in this paper is satisfied.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 4; art. no. 171374
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Resource Tuned Optimal Random Network Coding for Single Hop Multicast future 5G Networks
Autorzy:
Dong, Dhawa Sang
Pokhrel, Yagnya Murti
Gachhadar, Anand
Qamar, Faizan
Amiri, Iraj Sadegh
Maharjan, Ram Krishna
Powiązania:
https://bibliotekanauki.pl/articles/226605.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
coding coefficients
computational complexity
lower triangular matrix
random network coding
sparse coding
coefficients
Opis:
Optimal random network coding is reduced complexity in computation of coding coefficients, computation of encoded packets and coefficients are such that minimal transmission bandwidth is enough to transmit coding coefficient to the destinations and decoding process can be carried out as soon as encoded packets are started being received at the destination and decoding process has lower computational complexity. But in traditional random network coding, decoding process is possible only after receiving all encoded packets at receiving nodes. Optimal random network coding also reduces the cost of computation. In this research work, coding coefficient matrix size is determined by the size of layers which defines the number of symbols or packets being involved in coding process. Coding coefficient matrix elements are defined such that it has minimal operations of addition and multiplication during coding and decoding process reducing computational complexity by introducing sparseness in coding coefficients and partial decoding is also possible with the given coding coefficient matrix with systematic sparseness in coding coefficients resulting lower triangular coding coefficients matrix. For the optimal utility of computational resources, depending upon the computational resources unoccupied such as memory available resources budget tuned windowing size is used to define the size of the coefficient matrix.
Źródło:
International Journal of Electronics and Telecommunications; 2019, 65, 3; 463-469
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Signal Subspace Speech Enhancement Approach Based on Joint Low-Rank and Sparse Matrix Decomposition
Autorzy:
Sun, C.
Xie, J.
Leng, Y.
Powiązania:
https://bibliotekanauki.pl/articles/177990.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
subspace speech enhancement
singular value decomposition
joint low-rank and sparse matrix decomposition
Opis:
Subspace-based methods have been effectively used to estimate enhanced speech from noisy speech samples. In the traditional subspace approaches, a critical step is splitting of two invariant subspaces associated with signal and noise via subspace decomposition, which is often performed by singular-value decomposition or eigenvalue decomposition. However, these decomposition algorithms are highly sensitive to the presence of large corruptions, resulting in a large amount of residual noise within enhanced speech in low signal-to-noise ratio (SNR) situations. In this paper, a joint low-rank and sparse matrix decomposition (JLSMD) based subspace method is proposed for speech enhancement. In the proposed method, we firstly structure the corrupted data as a Toeplitz matrix and estimate its effective rank value for the underlying clean speech matrix. Then the subspace decomposition is performed by means of JLSMD, where the decomposed low-rank part corresponds to enhanced speech and the sparse part corresponds to noise signal, respectively. An extensive set of experiments have been carried out for both of white Gaussian noise and real-world noise. Experimental results show that the proposed method performs better than conventional methods in many types of strong noise conditions, in terms of yielding less residual noise and lower speech distortion.
Źródło:
Archives of Acoustics; 2016, 41, 2; 245-254
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speech emotion recognition based on sparse representation
Autorzy:
Yan, J.
Wang, X.
Gu, W.
Ma, L.
Powiązania:
https://bibliotekanauki.pl/articles/177778.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
speech emotion recognition
sparse partial least squares regression SPLSR
SPLSR
feature selection and dimensionality reduction
Opis:
Speech emotion recognition is deemed to be a meaningful and intractable issue among a number of do- mains comprising sentiment analysis, computer science, pedagogy, and so on. In this study, we investigate speech emotion recognition based on sparse partial least squares regression (SPLSR) approach in depth. We make use of the sparse partial least squares regression method to implement the feature selection and dimensionality reduction on the whole acquired speech emotion features. By the means of exploiting the SPLSR method, the component parts of those redundant and meaningless speech emotion features are lessened to zero while those serviceable and informative speech emotion features are maintained and selected to the following classification step. A number of tests on Berlin database reveal that the recogni- tion rate of the SPLSR method can reach up to 79.23% and is superior to other compared dimensionality reduction methods.
Źródło:
Archives of Acoustics; 2013, 38, 4; 465-470
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
ZA-APA with Adaptive Zero Attractor Controller for Variable Sparsity Environment
Autorzy:
Radhika, S.
Chandrasekar, A.
Nirmalraj, S.
Powiązania:
https://bibliotekanauki.pl/articles/1844469.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Zero Attraction APA
sparse channel
convergence
steady state mean square error
variable zero attraction controller
Opis:
The zero attraction affine projection algorithm (ZA-APA) achieves better performance in terms of convergence rate and steady state error than standard APA when the system is sparse. It uses l1 norm penalty to exploit sparsity of the channel. The performance of ZA-APA depends on the value of zero attractor controller. Moreover a fixed attractor controller is not suitable for varying sparsity environment. This paper proposes an optimal adaptive zero attractor controller based on Mean Square Deviation (MSD) error to work in variable sparsity environment. Experiments were conducted to prove the suitability of the proposed algorithm for identification of unknown variable sparse system.
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 4; 695-700
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Large-scale hyperspectral image compression via sparse representations based on online learning
Autorzy:
Ülkü, İ.
Kizgut, E.
Powiązania:
https://bibliotekanauki.pl/articles/331241.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
hyperspectral imaging
compression algorithm
dictionary learning
sparse coding
obrazowanie wielospektralne
algorytm kompresji
nauczanie online
kodowanie rzadkie
Opis:
In this study, proximity based optimization algorithms are used for lossy compression of hyperspectral images that are inherently large scale. This is the first time that such proximity based optimization algorithms are implemented with an online dictionary learning method. Compression performances are compared with the one obtained by various sparse representation algorithms. As a result, proximity based optimization algorithms are listed among the three best ones in terms of compression performance values for all hyperspectral images. Additionally, the applicability of anomaly detection is tested on the reconstructed images.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 1; 197-207
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A parallel block Lanczos algorithm and its implementation for the evaluation of some eigenvalues of large sparse symmetric matrices on multicomputers
Autorzy:
Guarracino, M. R.
Perla, F.
Zanetti, P.
Powiązania:
https://bibliotekanauki.pl/articles/908413.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
cluster architecture
symmetric block Lanczos algorithm
sparse matrices
parallel eigensolver
algorytm Lanczosa
macierze rzadkie
architektura klastrowa
Opis:
In the present work we describe HPEC (High Performance Eigenvalues Computation), a parallel software package for the evaluation of some eigenvalues of a large sparse symmetric matrix. It implements an efficient and portable Block Lanczos algorithm for distributed memory multicomputers. HPEC is based on basic linear algebra operations for sparse and dense matrices, some of which have been derived by ScaLAPACK library modules. Numerical experiments have been carried out to evaluate HPEC performance on a cluster of workstations with test matrices from Matrix Market and Higham’s collections. A comparison with a PARPACKroutine is also detailed. Finally, parallel performance is evaluated on random matrices, using standard parameters.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2006, 16, 2; 241-249
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Phonetic Segmentation using a Wavelet-based Speech Cepstral Features and Sparse Representation Classifier
Autorzy:
Al-Hassani, Ihsan
Al-Dakkak, Oumayma
Assami, Abdlnaser
Powiązania:
https://bibliotekanauki.pl/articles/2058484.pdf
Data publikacji:
2021
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
Arabic speech corpus
ASR
F1-score
phonetic segmentation
sparse representation classifier
TTS
wavelet packet
Opis:
Speech segmentation is the process of dividing speech signal into distinct acoustic blocks that could be words, syllables or phonemes. Phonetic segmentation is about finding the exact boundaries for the different phonemes that composes a specific speech signal. This problem is crucial for many applications, i.e. automatic speech recognition (ASR). In this paper we propose a new model-based text independent phonetic segmentation method based on wavelet packet speech parametrization features and using the sparse representation classifier (SRC). Experiments were performed on two datasets, the first is an English one derived from TIMIT corpus, while the second is an Arabic one derived from the Arabic speech corpus. Results showed that the proposed wavelet packet decomposition features outperform the MFCC features in speech segmentation task, in terms of both F1-score and R-measure on both datasets. Results also indicate that the SRC gives higher hit rate than the famous k-Nearest Neighbors (k-NN) classifier on TIMIT dataset.
Źródło:
Journal of Telecommunications and Information Technology; 2021, 4; 12--22
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Composition of wavelet and Fourier transforms
Autorzy:
Ziółko, Mariusz
Witkowski, Marcin
Gałka, Jakub
Powiązania:
https://bibliotekanauki.pl/articles/747314.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
wavelet transform, Fourier transform, numerical methods, sparse systems
Transformacja falkowa, transformacja Fouriera, metody numeryczne, systemy rzadkie
Opis:
W pracy przedstawione są podstawowe własności szeregowego złożenia dwóch transformacji: falkowej i Fouriera. Uzyskano dwa rodzaje transformacji ponieważ transformacje falkowe i Fouriera nie są przemienne. Przedstawione są konsekwencje zjawiska zwanego "przestępstwem falkowym". Zastosowanie falek ze zwartymi nośnikami w dziedzinie częstotliwości (np. falki Meyera) prowadzi do reprezentacji sygnałów w postaci macierzy rzadkich. Sygnały mowy zostały użyte do przetestowania przedstawionych transformacji.
The paper presents the basic properties of the serial composition of two transformations: wavelet and Fourier. Two types of transformations were obtained because wavelet and Fourier transformations do not commute. The consequences of a phenomenon known as a "wavelet crime" are presented. Using wavelets with compact support in the frequency domain (e.g. Meyer wavelets) leads to the representation of signals as sparse matrices. Speech signals were used to test the presented transforms.
Źródło:
Mathematica Applicanda; 2018, 46, 1
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Overview of adaptive and low-rank approximation algorithms for modeling influence of electromagnetic waves generated by cellphone antenna on human head
Autorzy:
Głut, Barbara
Paszyński, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/2097964.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
mesh generation
mesh adaptation
Pennes bioheat equations
time-harmonic Maxwell equations
sparse factorization
low rank approximation
Opis:
This paper presents an overview of formulations and algorithms that are dedicated to modeling the influence of electromagnetic waves on the human head. We start from h adaptive approximation of a three-dimensional MRI scan of the human head. Next, we solve the time-harmonic Maxwell equations with a 1.8 GHz cellphone antenna. We compute the specific absorption rate used as the heat source for the Pennes bioheat equation modeling the heat generated by EM waves inside the head. We propose an adaptive algorithm mixed with time-stepping iterations where we simultaneously refine the computational mesh, solve the Maxwell and Pennes equations, and iterate the time steps. We employ the sparse Gaussian elimination algorithm with the low-rank compres-sion of the off-diagonal matrix blocks for the factorization of the matrices. We conclude with the statement that 15 minutes of talking with a 1.8 GHz antenna with one watt of power results in increased brain tissue temperatures (up to 38.4◦C).
Źródło:
Computer Science; 2021, 22 (4); 433--461
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Quick offline sparse matrices
Szybkie rzadkie macierze przechowywane na dysku
Autorzy:
Wicijowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/160240.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Elektrotechniki
Tematy:
macierz rzadka
mnożenie
przechowywanie w trybie offline
wielki zbiór danych
sparse matrix
multiplication
offline storage
huge datasets
Opis:
When dealing with large datasets, computer memory constraints are a common problem. With the volumes of data exceeding 1 GiB of size, storage of the whole datasets in RAM becomes infeasible. Since in most applications one deals with only a portion of dataset at a time, the rest may be kept offline on nonvolatile memory that provides larger capacities. The access to nonvolatile memory is typically a few orders of magnitude slower than of RAM, so an efficient method of storage should be proposed to keep the number of disc accesses count as small as possible. In the paper I describe the offline storage of sparse matrices that is built on top of Hierarchical Data Format (precisely, on the latest revision - HDF5) addressing the problem of matrix-vector multiplication.
Ograniczenia pamięci komputera są powszechnym problemem przy obliczeniach przeprowadzanych na wielkich zbiorach danych. Przy danych roboczych przekraczających 1 GiB, składowanie całości w pamięci operacyjnej staje się utrudnione, a często nawet nieosiągalne. Ponieważ w większości aplikacji wykonuje się działania jedynie na fragmencie zbioru danych, reszta może być przechowywana w pamięci stałej, która zapewnia dużo większe pojemności. Dostęp do pamięci stałej jest zazwyczaj kilka rzędów wielkości wolniejszy niż do RAMu, zatem należy przedstawić metodę składowania ograniczającą do minimum ilość dostępów do dysku. W artykule opisuję format przechowywania macierzy rzadkich na dysku, zbudowanym na bazie formatu HDF5 (Hierarchical Data Format) pod kątem minimalizacji czasu mnożenia tej macierzy przez wektor.
Źródło:
Prace Instytutu Elektrotechniki; 2010, 247; 209-222
0032-6216
Pojawia się w:
Prace Instytutu Elektrotechniki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Localizing influential genes with modified versions of Bayesian Information Criterion
Autorzy:
Bogdan, Małgorzata
Szulc, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/748746.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
genetyka statystyczna, wybór modelu, rzadka regresja liniowa,
statistical genetics, quantitative trait loci, model selection, sparse linear regression, Bayesian Information Criterion
Opis:
W ostatnich latach nastąpił bardzo szybki rozwój technologii  wspomagających badania w genetyce. Rezultatem tego postępu są olbrzymie zbiory danych. Skuteczne pozyskiwanie informacji z takich zbiorów wymaga scisłej współpracy między genetykami, informatykami oraz statystykami. Rolą statystyków jest okreslenie precyzyjnych kryteriów gwarantujących efektywne oddzielenie istotnej informacji od losowych zakłócen. W szczególnosci, duze rozmiary tych zbiorów wymagają opracowania nowych metod korekty na wielokrotne testowanie oraz nowych kryteriów wyboru istotnych zmiennych objasniających. Szczególnym przykładem identyfikacji zmiennych objasniających jest problem lokalizacji genów odpowiedzialnych za cechy ilosciowe (Quantitative Trait Loci, QTL).Do lokalizacji genów stosuje się tzw. markery molekularne. Są to fragmenty łancucha DNA, które mogą występowac w róznych wariantach (allelach) u róznych jednostek w populacji. Postac danego markera u badanego osobnika mozna ustalic eksperymentalnie.U organizmów diploidalnych, u których chromosomy występują w parach, genotyp danego markera jest wyspecyfikowany przez podanie alleli występujących na obu chromosomach. Z punktu widzenia statystyka genotypy markerów stanowią jakosciowe zmienne objasniające. Jezeli dany marker znajduje się blisko genu wpływającego na badaną cechę, to mozemy spodziewac się  statystycznej zaleznosci między genotypem w tym markerze a badaną cechą ilosciową.Do identyfikacji istotnych markerów genetycznych zwykle stosuje się model regresji wielorakiej. Liczbę zmiennych niezaleznych mozna w tej sytuacji szacowac za pomocą jednego z  wielu kryteriów wyboru modelu. Niestety, okazuje się, ze w kontekscie genetycznym, gdzie liczba markerów istotnie przewyzsza liczbę obserwacji, klasyczne kryteria wyboru modelu przeszacowują liczbę istotnych zmiennych.Aby rozwiązac ten problem ostatnio wprowadzono kilka nowych modyfikacji Bayesowskiego Kryterium Informacyjnego. W tym artykule zaprezentujemy trzy z tych modyfikacji, podamy wyniki dotyczące zgodnosci tych metod w sytuacji gdy liczba dostępnych markerów genetycznych rosnie wraz z rozmiarem próby oraz wyniki symulacji komputerowych ilustrujących działanie tych metod w kontekscie genetycznym.
Regions of the genome that influence quantitative traits are called quantitative trait loci (QTLs) and can be located using statistical methods. For this aim scientists use genetic markers, whose genotypes are known, and look for the associations between these genotypes and trait values. The common method which can be used in this problem is a linear regression. There are many model selection criteria for the choice of predictors in a linear regression. However, in the context of QTL mapping, where the number of available markers $p_n$ is usually  bigger than the sample size $n$, the classical criteria overestimate the number of regressors. To solve this problem several modifications of the {\it Bayesian Information Criterion} have been proposed and it has been recently proved that at least three of them, EBIC, mBIC and mBIC2, are consistent (also in case when $p_n>n$). In this article we discuss these criteria and their asymptotic properties and compare them by an extensive simulation study in the genetic context.
Źródło:
Mathematica Applicanda; 2012, 40, 1
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Electronic structures of CdSe quantum dots embedded in ZnSe
Autorzy:
Jayawardhana, M. R. P. I.
Wijewardena Gamalath, K. A. I. L.
Powiązania:
https://bibliotekanauki.pl/articles/1178287.pdf
Data publikacji:
2017
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
LCAO method
Quantum dot
Sparse matrices
adjacency matrix
folded spectrum method
optical matrix elements
strain effects
valence band offset
Opis:
The electronic structures and optical matrix elements of CdSe semiconductor quantum dots of near cubical, hemispherical and cylindrical shape embedded in ZnSe were calculated. Bulk Hamiltonian matrices were obtained using the empirical tight binding method including spin-orbital coupling and relativistic effects. All quantum dots were simulated in reciprocal space and the number of atoms in each quantum dot was kept nearly equal for the comparison purpose. An adjacency matrix was produced which indicates the adjacencies of unit cells and the bulk Hamiltonian was included for each adjacency point in order to obtain the quantum dot Hamiltonians. The strain effects, valence band offset and spin orbital coupling were included in the calculations. The quantum dot Hamiltonian was solved to obtain the highest and lowest eigenvalues from which the electronic structure was obtained. Then eigenvalues near integers ranging from the lowest eigenvalue to highest eigenvalue was generated for the point.
Źródło:
World Scientific News; 2017, 86, 3; 205-225
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting study of mains reliability based on sparse field data and perspective state space models
Prognozowanie niezawodności elementów sieci wodociągowej na podstawie rzadkich danych terenowych i modeli przestrzeni stanów
Autorzy:
Valis, David
Forbelská, Marie
Vintr, Zdeněk
Powiązania:
https://bibliotekanauki.pl/articles/301060.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
mains
critical infrastructure
reliability prognosis
sparse data
state space models
sieć wodociągowa
infrastruktura krytyczna
prognoza niezawodności
rzadkie dane
model przestrzeni stanów
Opis:
The elements of critical infrastructure have to meet demanding dependability, safety and security requirements. The article deals with the prognosis of water mains reliability while using sparse irregular filed data. The data are sparse because the only thing we know is the number of mains failures during a given month. Since it is possible to transform the data into a typical reliability measure (rate of failure occurrence – ROCOF), we can examine the course of this measure development in time. In order to model and predict the ROCOF development, we suggest novel single and multiple error state space models. The results can be used for i) optimizing mains operation and maintenance, ii) estimating life cycle cost, and iii) planning crisis management.
Elementy infrastruktury krytycznej muszą spełniać wysokie wymagania w zakresie niezawodności, bezpieczeństwa i ochrony. Artykuł dotyczy prognozowania niezawodności sieci wodociągowej przy wykorzystaniu nieregularnie rejestrowanych rzadkich danych. Wykorzystane w pracy dane są rzadkie, ponieważ dostarczają jedynie informacji na temat liczby uszkodzeń wodociągu w danym miesiącu. Przekształcenie tych danych w typową miarę niezawodności (wskaźnik występowania uszkodzeń – ROCOF), pozwala zbadać przebieg rozwoju tej miary w czasie. Rozwój ROCOF można modelować i przewidywać za pomocą zaproponowanych w pracy innowacyjnych modeli przestrzeni stanów uwzględniających pojedynczy błąd lub wiele błędów. Uzyskane wyniki można wykorzystać do i) optymalizacji pracy i eksploatacji sieci wodociągowej, ii) szacowania kosztów cyklu życia, oraz iii) planowania zarządzania kryzysowego.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 2; 179-191
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Efficient simulations of large-scale convective heat transfer problems
Autorzy:
Goik, Damian
Banaś, Krzysztof
Bielański, Jan
Chłoń, Kazimierz
Powiązania:
https://bibliotekanauki.pl/articles/2097965.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
convective heat transfer
finite element method
sparse linear equations
algebraic multigrid
Navier–Stokes equations
GMRES
block preconditioning
SUPG stabilization
MPI
PETSc
scalability
Opis:
We describe an approach for efficient solution of large-scale convective heat transfer problems that are formulated as coupled unsteady heat conduction and incompressible fluid-flow equations. The original problem is discretized over time using classical implicit methods, while stabilized finite elements are used for space discretization. The algorithm employed for the discretization of the fluid-flow problem uses Picard’s iterations to solve the arising nonlinear equations. Both problems (the heat transfer and Navier–Stokes equations) give rise to large sparse systems of linear equations. The systems are solved by using an iterative GMRES solver with suitable preconditioning. For the incompressible flow equations, we employ a special preconditioner that is based on an algebraic multigrid (AMG) technique. This paper presents algorithmic and implementation details of the solution procedure, which is suitably tuned – especially for ill-conditioned systems that arise from discretizations of incompressible Navier–Stokes equations. We describe a parallel implementation of the solver using MPI and elements from the PETSC library. The scalability of the solver is favorably compared with other methods, such as direct solvers and the standard GMRES method with ILU preconditioning.
Źródło:
Computer Science; 2021, 22 (4); 517--538
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reduction of BER using RSC code for Optical Code Division Multiple Access Networks
Autorzy:
Panda, Satyasen
Powiązania:
https://bibliotekanauki.pl/articles/1178316.pdf
Data publikacji:
2017
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Cross Correlation (CC)
Multiple Access Interface (MAI)
Optical Code Division Multiple Access (OCDMA)
Random Sparse Code (RSC)
Wavelength hopping time spreading (WHTS)
Opis:
In this study, a two dimensional (2-D) wavelength hopping and time spreading (WHTS) optical code division multiple access (OCDMA) code is designed using Sparse ruler technique. The proposed 64 bit 2-D code is constructed by an algorithm based on random spacing of sparse codes referred in this work as Random Sparse Code (RSC). The performance of the proposed 2-D RSC is evaluated in terms of bit error rate (BER), received signal power and time domain analysis of received signals. The system performance of the OCDMA system utilizing 2-D RSC code improved significantly due to less BER, low cross correlation property and simple encoder/decoder design. The output BER is much lower at a data rate of 1.25 gbps and 2.5 gbps for a distance of 100 km with ITU-T standard single mode fiber with attenuation level of 0.2dB/km.
Źródło:
World Scientific News; 2017, 81, 2; 106-120
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnostyka silnika synchronicznego oparta na rozpoznawaniu dźwięku z zastosowaniem LPCC i GSDM
Diagnostics of a synchronous motor based on sound recognition with application of LPCC and GSDM
Autorzy:
Głowacz, A.
Głowacz, W.
Powiązania:
https://bibliotekanauki.pl/articles/156930.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
silnik synchroniczny
rozpoznawanie dźwięku
LPCC
GSDM
diagnostyka
synchronous motor
sound recognition
LPCC (Linear Predictive Cepstrum Coefficients)
GSDM (Genetic Sparse Distributed Memory)
diagnostics
Opis:
Zaprezentowano koncepcję badania sygnałów akustycznych stanów przedawaryjnych silnika synchronicznego. Oprogramowanie do rozpoznawania dźwięku zostało zaimplementowane. Algorytmy przetwarzania i analizy sygnałów akustycznych zostały zastosowane. System jest oparty na algorytmie LPCC (Współczynniki cepstralne liniowego kodowania) i GSDM (Genetyczna rozrzedzona pamięć rozproszona). Badania zostały przeprowadzone dla sygnałów akustycznych stanów przedawaryjnych. Zmiany w sygnale akustycznym spowodowane były przez zwarcia i przerwy w obwodzie stojana. Analiza wyników pokazuje wrażliwość metody opartej na LPCC i GSDM w zależności od danych wejściowych. Wyniki badań potwierdzają poprawne działanie systemu rozpoznawania dźwięku silnika synchronicznego.
In recent years the methods of sound recognition have been de-veloped. Hence, there is an idea to use them in case of machines. The paper describes the concept of investigations of acoustic signals of synchronous motor imminent failure conditions. Measurements were taken with a recorder OLYMPUS WS-200S. Sound recognition software was implemented. Algorithms of signal processing and analysis were used. The system is based on the LPCC (Linear Predictive Cepstrum Coefficients) algorithm and GSDM (Genetic Sparse Distributed Memory). Investigations were carried out for acoustic signals of imminent failure conditions. The following plan of investigations of a synchronous motor acoustic signal was proposed: recording of audio track, sound track division, sampling, quantization, normalization, filtration, windowing, feature extraction, classification (Fig. 2). Figs. 3, 4, 5 and 6 show changes of the LPCC values for four types of the categories recognized. Changes in the acoustic signal were caused by short circuit and broken coils in the stator circuit. The sound recognition efficiency depending on the acoustic signal and the sample length is presented in Fig. 8. The sound recognition system was built for a synchronous motor. There were used 39 band-pass filters in investigations. Analysis of the results shows the sensitivity of the method based on LPCC and GSDM, depending on the input data. The results confirm correct operation of the synchronous motor sound recognition system. These studies can be used for diagnostics based on acoustic emission in electrical, mechanical, hydraulic and pneumatic machines.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 5, 5; 479-482
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Diagnostyka silnika synchronicznego oparta na rozpoznawaniu dźwięku z zastosowaniem FFT i GSDM
Synchronous motor diagnostics based on sound recognition with use of FFT and GSDM
Autorzy:
Głowacz, A.
Powiązania:
https://bibliotekanauki.pl/articles/187768.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technik Innowacyjnych EMAG
Tematy:
diagnostyka
szybka transformacja Fouriera
GSDM (genetyczna rozrzedzona pamięć rozproszona)
silnik synchroniczny
diagnostics
fast Fourier transform (FFT)
GSDM (Genetic Sparse Distributed Memory)
synchronous motor
Opis:
Zamierzeniem pracy jest przedstawienie metody rozpoznawania dźwięku silnika synchronicznego wykorzystującej FFT i GSDM. Badania rozpoznawania dźwięków przeprowadzono dla silnika synchronicznego podczas pracy bez uszkodzeń, ze zwarciem zezwojów w obwodzie stojana, z jedną przerwą w obwodzie stojana i z trzema przerwami w obwodzie stojana. Wyniki badań potwierdzają dużą skuteczność rozpoznawania dźwięku w silniku synchronicznym.
The work has aimed to present a method of sound recognition of a synchronous motor with use of FFT and GSDM. The research on sound recognition has been done for a synchronous motor during operation without any failures, then in case of a short-circuit of coils in stator circuit, in case of one break in stator circuit and three breaks in stator circuit. The research results have validated a high effectiveness of sound recognition in a synchronous motor.
Źródło:
Mechanizacja i Automatyzacja Górnictwa; 2010, R. 48, nr 3, 3; 25-29
0208-7448
Pojawia się w:
Mechanizacja i Automatyzacja Górnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modified Block Sparse Bayesian Learning-Based Compressive Sensing Scheme For EEG Signals
Autorzy:
Upadhyaya, Vivek
Salim, Mohammad
Powiązania:
https://bibliotekanauki.pl/articles/1844532.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
compressive sensing
CS
mean square error
MSE
structural similarity index measure
SSIM
electroencephalogram
EEG
digital signal processing
DSP
block sparse Bayesian learning
BSBL
Opis:
Advancement in medical technology creates some issues related to data transmission as well as storage. In real-time processing, it is too tedious to limit the flow of data as it may reduce the meaningful information too. So, an efficient technique is required to compress the data. This problem arises in Magnetic Resonance Imaging (MRI), Electrocardiogram (ECG), Electroencephalogram (EEG), and other medical signal processing domains. In this paper, we demonstrate Block Sparse Bayesian Learning (BSBL) based compressive sensing technique on an Electroencephalogram (EEG) signal. The efficiency of the algorithm is described using the Mean Square Error (MSE) and Structural Similarity Index Measure (SSIM) value. Apart from this analysis we also use different combinations of sensing matrices too, to demonstrate the effect of sensing matrices on MSE and SSIM value. And here we got that the exponential and chi-square random matrices as a sensing matrix are showing a significant change in the value of MSE and SSIM. So, in real-time body sensor networks, this scheme will contribute a significant reduction in power requirement due to its data compression ability as well as it will reduce the cost and the size of the device used for real-time monitoring.
Źródło:
International Journal of Electronics and Telecommunications; 2021, 67, 3; 331-336
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza pracy przekształtnika SMC sterowanego metodą wektora przestrzennego
Analysis of the sparse matrix converter controlled by space vector modulation
Autorzy:
Suliga, Mateusz
Powiązania:
https://bibliotekanauki.pl/articles/37515964.pdf
Data publikacji:
2022
Wydawca:
Politechnika Rzeszowska im. Ignacego Łukasiewicza. Oficyna Wydawnicza
Tematy:
pośredni przekształtnik matrycowy
IMC
SMC
wektorowa modulacja szerokości impulsu
SVM
przemiennik częstotliwości
Indirect Matrix Converter
Sparse Matrix Converter
Space Vector Modulation
frequency converter
SV
Opis:
Artykuł prezentuje badania symulacyjne pośredniego przekształtnika matrycowego o topologii Sparse Matrix Converter (SMC). W porównaniu do standardowego układu przekształtnika matrycowego, topologia SMC wykorzystuje mniej elementów półprzewodnikowych, co zmniejsza cenę wykonania układu. Do sterowania łącznikami została wybrana metoda sterowania wektorowego, Space Vector Modulation (SVM). Wynikiem przeprowadzonych badań są przebiegi kształtowanych napięć wyjściowego oraz prądów wejściowych przekształtnika. Wyznaczone spektrum harmonicznych przebiegów potwierdza poprawność działania zaprojektowanego modelu przekształtnika oraz przedstawia procentową zawartość wyższych harmonicznych. Układ typu SMC spełnia założenia związane z przekształtnikami matrycowymi, przy jednoczesnym wykorzystaniu mniejszej ilości elementów półprzewodnikowych.
This article presents simulation studies of Sparse Matrix Converter (SMC). Compared to the standard Indirect Matrix Converter (IMC), the SMC topology uses fewer semiconductor elements, witch reduces cost of the converter. The Space Vector Modulation (SVM) is used to control each of the switches. The results of the conducted tests are waveform of output voltages and input currents of the converters. The determined spectrum of harmonic waveforms confirms the correct operation of the designed converter model and presents the percentage content of higher harmonics. The SMC topology meet the assumptions related to matrix converters, while using fewer number of semiconductor elements.
Źródło:
Zeszyty Naukowe Politechniki Rzeszowskiej. Elektrotechnika; 2022, 39; 83-92
0209-2662
2300-6358
Pojawia się w:
Zeszyty Naukowe Politechniki Rzeszowskiej. Elektrotechnika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Localization of genes
Autorzy:
Szulc, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/748362.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
genetyka statystyczna, wybór modelu, rzadka regresja liniowa, bayesowskie kryterium informacyjne, ilościowa analiza lokalizacji genów
statistical genetics, quantitative trait loci, model selection, sparse linear regression, Bayesian Information Criterion
Opis:
Rozwój genetyki w ostatnich latach doprowadził do sytuacji, w której jesteśmy w stanie przyjrzeć się łańcuchom DNA z dużą precyzją i zebrać ogromne ilości informacji. Oprócz tego okazało się, że zależności między genami a cechami są bardziej skomplikowane niż się wcześniej wydawało. Te dwie rzeczy spowodowały, że niezbędna stała się ścisła współpraca między genetykami a matematykami, których zadaniem jest opracowanie specjalnych metod, radzących sobie w specyficznych i trudnych problemach genetycznych. Artykuł zawiera przegląd zarówno klasycznych jak i najnowszych podejść do problemu lokalizacji genów, czyli wskazywania miejsc w łańcuchu DNA, które istotnie wpływają na interesujące nas cechy. Z powodu nie najlepszej komunikacji między matematykami i genetykami, znajomość metody innych niż klasyczne wśród tej drugiej grupy jest wciąż niewielka.
Development of genetics in recent years has led to a situation in which we are able to look at the DNA chains with high precision and collect vast amounts of information. In addition, it turned out that the relationships between genes and traits are more complex than previously thought. These two things caused the need for close collaboration between geneticists and mathematicians whose task is to develop special methods, coping with specific and difficult genetic problems. The article includes an overview of both classic and the latest approaches to the problem of localizing genes that indicate places in the DNA chain, which significantly influence the traits of interest to us. Because of not the best communication between mathematicians and geneticists, knowledge of methods other than the classic among the latter group is still small.
Źródło:
Mathematica Applicanda; 2015, 43, 1
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Two implementations of the preconditioned conjugate gradient method on heterogeneous computing grids
Autorzy:
Collignon, T. P.
Van Gijzen, M. B.
Powiązania:
https://bibliotekanauki.pl/articles/907778.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
przetwarzanie siatkowe
system liniowy
metoda iteracyjna
gradient sprzężony
przepływ pęcherzykowy
grid computing
large sparse linear systems
iterative methods
conjugate gradient method
Chronopoulos/Gear CG
GridSolve middleware
bubbly flows
Opis:
Efficient iterative solution of large linear systems on grid computers is a complex problem. The induced heterogeneity and volatile nature of the aggregated computational resources present numerous algorithmic challenges. This paper describes a case study regarding iterative solution of large sparse linear systems on grid computers within the software constraints of the grid middleware GridSolve and within the algorithmic constraints of preconditioned Conjugate Gradient (CG) type methods. We identify the various bottlenecks induced by the middleware and the iterative algorithm. We consider the standard CG algorithm of Hestenes and Stiefel, and as an alternative the Chronopoulos/Gear variant, a formulation that is potentially better suited for grid computing since it requires only one synchronisation point per iteration, instead of two for standard CG. In addition, we improve the computation-to-communication ratio by maximising the work in the preconditioner. In addition to these algorithmic improvements, we also try to minimise the communication overhead within the communication model currently used by the GridSolve middleware. We present numerical experiments on 3D bubbly flow problems using heterogeneous computing hardware that show lower computing times and better speed-up for the Chronopoulos/Gear variant of conjugate gradients. Finally, we suggest extensions to both the iterative algorithm and the middleware for improving granularity.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2010, 20, 1; 109-121
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Polynomial chaos expansion method in estimating probability distribution of rotor-shaft dynamic responses
Autorzy:
Lasota, R.
Stocki, R.
Tauzowski, P.
Szolc, T.
Powiązania:
https://bibliotekanauki.pl/articles/200053.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
stochastic moment estimation
sparse polynomial chaos expansion
maximum entropy principle
rotor
uncertainties
hybrid mechanical model
random unbalance distribution
zasada maksymalnej entropii
wirnik
niepewności
model hybrydowy
losowy rozkład asymetrii
Opis:
The main purpose of the study is an assessment of computational efficiency of selected numerical methods for estimation of vibrational response statistics of a large multi-bearing turbo-generator rotor-shaft system. The effective estimation of the probability distribution of structural responses is essential for robust design optimization and reliability analysis of such systems. The analyzed scatter of responses is caused by random residual unbalances as well as random stiffness and damping parameters of the journal bearings. A proper representation of these uncertain parameters leads to multidimensional stochastic models. Three estimation techniques are compared: Monte Carlo sampling, Latin hypercube sampling and the sparse polynomial chaos expansion method. Based on the estimated values of the first four statistical moments the probability density function of the maximal vibration amplitude is evaluated by the maximal entropy principle method. The method is inherently suited for an accurate representation of the probability density functions with an exponential behavior, which appears to be characteristic for the investigated rotor-shaft responses. Performing multiple numerical tests for a range of sample sizes it was found that the sparse polynomial chaos method provides the best balance between the accuracy and computational effectiveness in estimating the unknown probability distribution of the maximal vibration amplitude.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2015, 63, 2; 413-422
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-57 z 57

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies