Speech enhancement is one of the many challenging tasks in signal processing, especially in the case of nonstationary speech-like noise. In this paper a new incoherent discriminative dictionary learning algorithm is proposed to model both speech and noise, where the cost function accounts for both “source confusion” and “source distortion” errors, with a regularization term that penalizes the coherence between speech and noise sub-dictionaries. At the enhancement stage, we use sparse coding on the learnt dictionary to find an estimate for both clean speech and noise amplitude spectrum. In the final phase, the Wiener filter is used to refine the clean speech estimate. Experiments on the Noizeus dataset, using two objective speech enhancement measures: frequency-weighted segmental SNR and Perceptual Evaluation of Speech Quality (PESQ) demonstrate that the proposed algorithm outperforms other speech enhancement methods tested.
Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies
Informacja
SZANOWNI CZYTELNICY!
UPRZEJMIE INFORMUJEMY, ŻE BIBLIOTEKA FUNKCJONUJE W NASTĘPUJĄCYCH GODZINACH:
Wypożyczalnia i Czytelnia Główna: poniedziałek – piątek od 9.00 do 19.00