- Tytuł:
-
Wyszukiwanie dziur nieparzystych jako jeden z aspektów rozpoznania grafów doskonałych w automatycznej syntezie układów cyfrowych
Recognizing odd-hole free graphs for testing perfect graphs for automatic synthesis of digital circuits - Autorzy:
- Mielcarek, K.
- Powiązania:
- https://bibliotekanauki.pl/articles/152900.pdf
- Data publikacji:
- 2007
- Wydawca:
- Stowarzyszenie Inżynierów i Techników Mechaników Polskich
- Tematy:
-
algorytmy rozpoznawania grafów doskonałych
teoria grafów
automatyczna synteza sterowników
prefect graphs
odd-hole free graphs
prefect graphs recognizing algorithms - Opis:
-
Obserwujemy gwałtowny rozwój elektroniki i wszechobecną miniaturyzację, objawiającą się coraz większą ilością urządzeń realizujących coraz bardziej skomplikowane zadania. Ten rozwój pociąga za sobą konieczność opracowywania nowych, bardziej efektywnych metod panowania nad takim ogromem zależności. Złożoność problemów występujących w czasie automatycznego przygotowania układów cyfrowych powoduje, że w praktyce stosowane są algorytmy heurystyczne, dające wyniki przybliżone i nie zawsze w najkrótszym możliwym czasie. Pogoń za nowymi rozwiązaniami doprowadziła do pomysłu wykorzystania grafów doskonałych, które przez swoje własności pozwalają zmniejszyć wymagania czasowe a zatem i wymaganą moc obliczeniową, dając w zamian wyniki optymalne. Zanim można będzie operować na grafach doskonałych należy sprawdzić czy dany graf jest grafem doskonałym. Najnowsze prace wskazują, że grafy doskonałe można rozpoznawać (pośród innych metod) z użyciem algorytmów wyszukiwania dziur nieparzystych. Jednocześnie obserwuje się, że znacząca większość grafów opisujących rzeczywiste układy zawiera się w podklasach grafów doskonałych. W roku 1960, Claude Berge wysunął tezę mówiącą ze graf jest doskonały wtedy i tylko wtedy, gdy nie zawiera ani dziur nieparzystych ani anty-dziur nieparzystych. Teza jest znana jako Strong Perfect Graph Conjecture. (Chvátal i Sbihi zaproponowali nazwę grafu Bergea) wg propozycji dziura natomiast, jest bezcięciwowym cyklem, o długości przynajmniej cztery, zaś anty-dziura jest dopełnieniem takiego cyklu. Dziury i anty-dziury są natomiast parzyste i nieparzyste zgodnie z parzystością ich liczby wierzchołków. Nieparzysta dziura jak i nieparzysta anty-dziura nie są doskonałe, bowiem ich liczby klikowe wynoszą odpowiednio 2 oraz 2k+1 natomiast liczby chromatyczne mają odpowiednio 3 oraz k+1, co jednoznacznie uniemożliwia im być grafem doskonałym (liczba chromatyczna grafu doskonałego G, jest równa liczbie kliki grafu, dla każdego indukowanego podgrafu grafu G).
This paper should to point out potential strenght of prerfect graph algorithms - especially algorithms with use of odd-hole-free graph - for automated synthesis of digital circuits. Typically known problems are NP-complete, but using perfect graphs, complexity is decreasing to polynomial. Studies in this matter show that plenty of dependencies describing real-life sequential circuits can be described using perfect graphs. There shown simplified methods to recognize perfect graphs, placed basic knowledge about the subject and shown simplified analysis of digital controller described in SFC. In this analysis some methods for recognizing perfect graphs was used. - Źródło:
-
Pomiary Automatyka Kontrola; 2007, R. 53, nr 5, 5; 84-86
0032-4140 - Pojawia się w:
- Pomiary Automatyka Kontrola
- Dostawca treści:
- Biblioteka Nauki